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ABSTRACT

This paper summarizes our contribution to the SegTHOR
challenge. This competition addresses the problem of organs
at risk segmentation in CT images. For lung cancer treatment,
segmentation of nearby healthy organs is essential. The task
of organs delineation is largely manual and can be poten-
tially a source of mistakes. At this point, the segmentation
of organs that are located close to the tumor is a routine and
tedious procedure. With the intention to simplify this proce-
dure we study approaches of automatic organs segmentation
within CT images.
The solution we came up with is based on deep learning and
explores two concepts: attention mechanism and pixel shuffle
as an upsampling operator. In this study, we describe our
approach in details and evaluate it with test data provided
by challenge organizers. Without any post-processing our
method achieves notable performance with following inter-
mediate results: 0.8303, 0.9381, 0.9088, 0.9353 for Esopha-
gus, Heart, Trachea, and Aorta respectively (Dice scores are
reported).

Index Terms— SegTHOR, Segmentation, CT, Medical
Image Processing, Pixel Shuffle

1. INTRODUCTION

3D Computed tomography is a powerful tool for the human
body examination. Being a noninvasive diagnostic method
it has been firmly integrated into different therapy protocols.
However, despite its pros, this examination method has its
own drawbacks. Mainly, noise, low image contrast or even
absence of organs’ contours are the main challenges in CT
scan analysis. Besides this, the dimensional representation
of the input data imposes multiple restrictions on the way
the scan can be analyzed. All of the manual methods are
tedious and requires high level of concentration, at the same
time, any possible mistake during scan analysis process can
potentially become a serious problem in further therapy. At
this point, we are focusing to develop an automatic solution
for segmentation routine.
With the recent advances in Machine Learning and Deep
Learning, in particular, the scientific community has devel-
oped new techniques for vision tasks that are superior to the

classic computer vision methods. Talking about semantic
segmentation, Fully Convolutional Neural Networks [1] first
achieved decent performance on such type of tasks. All of
the modern neural network architectures explore the same
concept. For the natural image semantic segmentation com-
petition is high: FCNs [1], SegNet [2], DeepLab architectures
[3], PSPNet [4] and others show really high performance. In
medical image semantic segmentation domain UNet and its
variants [5, 6, 7, 8, 9, 10] show state of the art results. In this
study, we are trying to adapt the existing framework for the
purpose of segmentation of four organs: Esophagus, Heart,
Trachea, and Aorta.
Denoting the problem of automatic organs at risk segmen-
tation SegTHOR challenge [11] provides competition in
classifying given 3D CT voxels into five different regions:
Background, Esophagus, Heart, Trachea, and Aorta. Typi-
cally, this procedure is manual and requires a high amount of
time and can produce repeatable errors. In this paper, we pro-
pose an automatic solution for the above-named problem and
evaluate it with the data provided by the challenge organizers.

2. RELATED WORK

In this section, we describe prior work that we are using in
this paper.
We base our model on famous UNet architecture [5] intro-
duced by Olaf Ronneberger et al. for the purposes of biomed-
ical image segmentation, cells segmentation in particular. The
proposed network consists of encoding and decoding paths.
The skip connections employed between these paths enhance
localization capabilities and also help in solving the vanish-
ing gradient problem. The high number of channels in con-
tracting part of the network allows propagating information
further to higher resolution layers. Later, Attention mech-
anisms incorporated into UNet architecture were studied in
works [12] and [13].
The second concept we are using is the neural network with
residual connections, so-called ResNet [14]. The authors pro-
pose a deep architecture that can be trained efficiently. In or-
der to propagate gradients closer to the starting layers of the
network, residual blocks are proposed. Later, different resid-
ual blocks architectures [15] were studied.

For the task of image super-resolution, Shi et al. at [16]



Fig. 1. The example of pixel shuffle operation. Four given
channels form one output channel with higher spatial resolu-
tion.

proposed to use pixel shuffle as an upsampling operator. The
idea of pixel shuffle is illustrated in figure 1. This operator re-
arranges input channels to produce a feature map with higher
resolution. Worth to mention, this technique solves the prob-
lem of checkerboard artifacts in the output image, Later, the
same concept was employed for semantic segmentation tasks
[17, 18].

3. OUR METHOD

3.1. Data

The dataset is split into two parts by organizers: training and
testing. Training part has 40 CT images with voxel size vary-
ing between 0.90 mm and 1.37 mm per pixel. Majority of
the images in the train set have 512x512 slice resolution. The
number of slices varies from 150 to 284. Ground truth la-
bels are provided for every image in the training dataset and
contain manual segmentation on five different classes: Back-
ground, Esophagus, Heart, Trachea, and Aorta. Example of
the CT scan and corresponding labels are demonstrated in fig-
ure 2. No preprocessing is applied to the data.
The testing dataset has 20 images. Total 10 submissions are
available for participants to test their methods.

Fig. 2. Example of training data slice with provided labels.

3.2. Preprocessing

Since both testing and training data has a different spatial res-
olution, as the first step in preprocessing pipeline we resam-
ple every image to the 2x2x2.5 mm3 resolution. As the next
step, we crop the body region from the image by applying
median filter that eliminates the examination table from the
picture. Remaining region is cropped from the original image
and passed further. Finally, standard deviation and mean of
the body voxels are calculated, and then all image voxels are
normalized according to these values.

3.3. Method

We employed fully convolutional neural network architec-
ture based on UNet, with skip connections between contract-
ing and expanding paths and exponentially growing number
of channels across consecutive spatial resolution levels. We
choose starting number of feature channels in the network to
be equal to 16.
Our architecture consists of encoding part which is a residual
network [14] with the depth of 3 with 3, 4 and 6 full pre-
activation residual blocks at each level respectively. In our
experiment, we noticed that deeper networks does not im-
prove results but increase computational workload and can
be a potential source of the overfitting due to a large number
of parameters. Instead of Batch Normalization [19] we are
using Group Normalization [20] with the number of groups
equals to 4. As an activation function, we use Leaky ReLU
with slope equals to 0.2.
In the expanding part of the network, we employ two consec-
utive convolutions followed by activation at each scale. As an
upsampling operator, we have adopted the pixel shuffle [16]
technique to handle three-dimensional input. The example is
illustrated in figure 3 where eight three dimensional feature
maps produce a single three-dimensional output feature map
with higher spatial resolution.
In addition to this, we employ the attention mechanism de-
scribed in paper [13]. Due to the nature of annotation pro-
tocol, we found attention mechanism to work especially well
for this benchmark.

Fig. 3. Extension of pixel shuffle for three dimensions.



Table 1. Performance of proposed method on local cross-
validation and testing dataset, Dice index is reported. ESO
stands for Esophagus, HEA - Heart, TRA - Trachea, AOR -
Aorta.

ESO HEA TRA AOR
CV 0.7910 0.9193 0.9008 0.9020
Test 0.8303 0.9381 0.9088 0.9353

3.4. Training

We crop region with size 176x96x128 from the input image
and randomly mirror it along the first two axes. Then we
apply intensity shift augmentation.
The loss function we are using is Dice loss function that can
be written as following:

LDice(gt, pred) = 2 ∗
∑
gt ∗ pred+ ε∑

(gt2 + pred2) + ε

where gt is ground truth one-hot encoded labels, and pred
are output logits. For optimization, we are using Adam with
initial learning rate set to 1e − 3 and decaying with a rate
of 0.1 at 7th and 9th epoch. To evaluate the performance we
are using cross-validation scheme with four splits. To train
our network we are using three NVIDIA GTX 1080TIs with
PyTorch framework [21]. The network is trained with batch
size 6 for 10 epochs. Each epoch has 3200 iterations in it.
The whole training takes approximately one day.

4. EVALUATION

For evaluation, we are using the cross-validation scheme with
the number of splits equals to 4. Since no validation dataset
was provided and the number of training samples was lim-
ited, we decided that it was the best option for tracking the
performance of our experiments. The accuracy of our model
on training dataset measured with cross-validation with the
number of splits equals to four is reported in table 1.

5. INTERMEDIATE RESULTS AND CONCLUSION

The scores reported by the testing systems are listed in table
1. Comparing cross validation and testing values we can no-
tice that Dice scores for CV are consistently lower compared
to the test results. This might indicate that training dataset is
more diverse and contain more difficult samples.
In conclusion, proposed in this paper model achieves no-
table performance with the following intermediate results:
0.8303, 0.9381, 0.9088, 0.9353 for Esophagus, Heart, Tra-
chea, and Aorta respectively (Dice scores are reported). This
is done with no post-processing included in the segmentation
pipeline.
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