
A Method for Quality Assessment of Threat Modeling
Languages: The Case of enterpriseLang
Wenjun Xionga, Simon Hacksa,b and Robert Lagerströma

aSchool of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, Stockholm, Sweden
bSouthern University of Denmark, Denmark

Abstract
Enterprise systems are growing in complexity, and the adoption of cloud and mobile services has greatly
increased the attack surface. To proactively address these security issues in enterprise systems, a threat
modeling language for enterprise systems called enterpriseLang was proposed. It is a domain-specific
language (DSL) designed using the Meta Attack Language (MAL) framework and focuses on describing
system assets, attack steps, defenses, and asset associations. The threat models can serve as input for
attack simulations to analyze the behavior of attackers within the system. However, whether and to
what extent the functionality of these threat modeling languages is achieved has not been addressed. To
ensure the correct functionality of threat modeling languages, this paper proposes a method to assess
the quality of such languages and illustrates its application using enterpriseLang.

Keywords
Threat modeling, Attack simulations, Domain-specific language, Design guidelines, Test coverage

1. Introduction

Enterprise systems are growing in complexity and are becoming more and more connected.
Such connected systems can increase flexibility and productivity while also introducing security
threats. Recent years saw some of the largest, most sophisticated, and most severe cyber
attacks, such as the SolarWinds attack1 and the Florida water supply attack2, and the Facebook
information leak3, which affected millions of consumers and thousands of businesses.
To proactively deal with these security issues, threat modeling [1, 2] is one approach that

includes identifying the main assets within a system and threats to these assets. The approach
can be used to both assess the current state of a system and as a security-by-design tool for
developing secure systems and software. These threat models can serve as input for attack
simulations, which are used to analyze the behavior of attackers within the system [3], and
provide probabilistic security evaluations [4]. Based on such objective evaluations, security
controls can be prioritized and implemented to counter anticipated threats.

PoEM’21 Forum: 14th IFIP WG 8.1 Working Conference on the Practice of Enterprise Modelling, November 24-26, 2021
� wenjx@kth.se (W. Xiong); shacks@kth.se (S. Hacks); robertl@kth.se (R. Lagerström)
� 0000-0003-0434-4436 (W. Xiong); 0000-0003-0478-9347 (S. Hacks); 0000-0003-3089-3885 (R. Lagerström)

© 2020 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR

Workshop
Proceedings

http://ceur-ws.org

ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)
1https://www.cnet.com/news/solarwinds-hack-officially-blamed-on-russia-what-you-need-to-know/
2https://www.industrialdefender.com/florida-water-treatment-plant-cyber-attack/
3https://www.cbsnews.com/news/millions-facebook-user-records-exposed-amazon-cloud-server/

49

Previously, a domain-specific language (DSL) called enterpriseLang [5] was designed. It
is based on the Meta Attack Language (MAL) framework [4], which allows for analyzing
weaknesses related to known attack techniques and providing mitigation suggestions for these
attacks. Therefore, stakeholders of an enterprise can assess threats to their enterprise IT
environment and analyze what security settings could be implemented to secure the system
more effectively.
However, designing a MAL-based DSL is like any other complex task that is sometimes

error-prone and usually time-consuming, especially if the language shall be of high-quality
and comfortably usable [6]. To ensure the quality and usability of threat modeling languages,
established DSL design guidelines can be applied to assist in language development [6], and
automated tests based on threat models can be designed to check if the designed language
behaves as expected [3]. In this paper, we propose a method to assess the quality of MAL-based
DSLs exemplified with enterpriseLang. First, we compare a set of DSL design guidelines to the
development of enterpriseLang as a qualitative assessment. Then, we calculate the test coverage
of enterpriseLang to estimate how much of the assets, attack steps, edges, and defenses are
covered by existing test cases.
The remainder of this paper is structured as follows. In Section 2 and Section 3, we address

the related work and the background. Our proposed method is presented in Section 4. In
Section 5, we address the qualitative assessment of enterpriseLang, and in Section 6, we address
the quantitative assessment. Our work is discussed in Section 7 and concluded in Section 8.

2. Related Work

Our work relates to the evaluation of DSLs, which has been addressed previously in qualitative
and quantitative manner. Rodrigues et al. [7] conducted a systematic literature review (SLR) on
the usability evaluation of DSLs, where the techniques identified include software engineering
evaluation methods e.g., case studies [8] and experiential studies [9], and usability evaluation
methods such as usability tests [8] and heuristic evaluations [10]. Venable et al. [11] proposed
an extended design science research (DSR) evaluation framework for assessment of design
artifacts, such as DSLs, and pointed out some methods that can be used for evaluation, including
observational, analytical, experimental, and testing methods [12]. Haugen et al. [13] presented
a structured questionnaire based on three dimensions of a DSL, including expressiveness,
transparency, and formalization.
There are also a number of empirical evaluations of model-based threat analysis approaches.

For example, to empirically validate the STRIDE framework, Scandariato et al. [14] performed
a descriptive study to determine the completeness of the security analysis results. Similarly,
Wuyts et al. [15] presented empirical studies to evaluate a privacy threat analysis methodology
called LINDDUN.
Some modeling and simulation languages and related approaches have addressed the eval-

uation and validation explicitly. For example, coreLang [16] was developed as a simulation
language for general IT domains. It was evaluated through tests, a series of brainstorming
sessions with domain modelers, and with known cyber attack scenarios. powerLang [17] was
proposed as a probabilistic attack simulation language for the power domain and was validated

50

using a known cyber attack. vehicleLang [18] was designed to model vehicle IT infrastructure,
and it was evaluated by performing an SLR to identify possible attacks against vehicles, which
then served as a blueprint for test cases. pwnPr3d [19] was proposed as a threat modeling
approach for automatic attack graph generation based on network modeling and addressed
its validation by thorough experimentation of real-life systems (e.g., in-depth modeling of the
UNIX operating system). CySeMoL [20] was proposed as a cyber security modeling language for
enterprise-level system architectures and was validated through a test comparing the CySeMoL
assessments with the assessments of security professionals.

3. Background

3.1. Introduction to MAL

MAL is a language framework that serves as a basis to develop DSLs for modeling systems,
threats, and attacks in different domains, and generates attack graphs from the models [4]. Such
a language defines what information is required and specifies the generic attack logic about the
domain studied.
To create a MAL-based language, the first thing is to identify all relevant assets and their

associations within a particular domain. Each asset contains multiple attack steps, representing
real threats. A compromised attack step can lead to (represented by –>) a next attack step,
where each attack step is either of type OR (represented by |) or AND (represented by &). OR
indicates that an attacker can work on this attack step as soon as one of its parent attack steps is
compromised, while AND indicates that all its parent attack steps must be compromised for an
attacker to reach this step. An asset may also feature defenses (represented by #). The sum of
attack paths is the attack/defense graph used for the attack simulation. Also, assets can inherit
from each other, which means that an inherited asset inherits all attack steps and defenses of its
parent asset (unless explicitly stated otherwise).

3.2. A MAL-based Language for Enterprise Systems

Based on the MAL framework, enterpriseLang [5] was designed for modeling attacks on enter-
prise IT systems. The enterpriseLang metamodel visualizing its assets and associations can be
found in Figure 1. In total, enterpriseLang contains 22 assets, including 12 main assets and 10
inherited assets, which represent the fundamental components in enterprise systems.
The attack steps and defenses for each asset were extracted from the MITRE Enterprise

ATT&CK Matrix4. The links between attack steps and defenses reflect possible transitions of an
attacker among different assets. By using available tools (i.e., securiCAD [22]), enterpriseLang
enables attack simulations on its system model instances, and the simulation results can be
used to assess the current state of a system (e.g., the most vulnerable asset within the system)
and foster a higher degree of resilience against cyber attacks by simulating the impact of new
defenses and architectural changes.

4https://attack.mitre.org/

51

Uses

Operates

Computer

InternalNetwork

Windows Linux MacOS

ExtendsExtendsExtends

Accesses

Connects

Manages

Extends

WindowsAdmin

Extends

Browser

PeripheralDevice

ConnectsExternalNetwork

AdminAccount

Router

Runs

ThirdpartySoftware
Extends

Connects Serves RemovableMedia
Webcam

MicrophoneExtends

Extends

Extends

LogsIn

User

Protects

Firewall

CloudService Extends
UserAccount

OSService Accesses

Root

**

*

1

*
*

*

1

*

*

1*
*

1

*
*

1

1

*

*

*

*

*

*

*

*

Figure 1: The enterpriseLang metamodel containing assets and associations [5, 21].

To evaluate enterpriseLang, test cases are developed to check if the attack simulations
executed by enterpriseLang behave as expected, and attacks and potential defenses are modeled
accurately.

4. Research Method

enterpriseLang was developed according to the DSR guidelines of Peffers et al. [23]. To ensure
the correct functionality of enterpriseLang and foster better quality, we investigate if the
language development process follows the established DSL design guidelines as a qualitative
assessment. The evaluation process of enterpriseLang corresponds to the fifth step of the overall
design process [23]. According to Peffers et al. [23], the evaluation step involves observing
and measuring how successfully an artifact is created as a solution for the identified problem.
Five methods can be used to evaluate the designed artifacts, namely, observations, analysis,
experiments, tests, and descriptions [12].
To evaluate if a design artifact can achieve DSR goals and objectives, the evaluation process

can be divided into two dimensions: 1) the functional purpose of the evaluation, and 2) the
paradigm of the evaluation study [24]. The first dimension refers to why to evaluate, where the
functional purpose of formative evaluations is to help improve the outcomes of the process, and
the functional purpose of summative evaluations is to judge to what degree the outcomes match
expectations. The second dimension refers to how to evaluate, where the artificial evaluation
includes laboratory experiments, simulations, mathematical proofs, and naturalistic evaluation
methods including case studies, field studies, and surveys.
To address these dimensions, we apply guidelines collected for developing DSLs [25] ad-

dressing the different stages of action design research (ADR) [26], as shown in Figure 2. The
guidelines were systematically collected and structured based on an ongoing work [25], which
are established DSL design guidelines and can describe the best practices for designing DSLs of
high quality. For analytical evaluation of enterpriseLang and focusing on static analysis, we
propose to compare its development process to the aforementioned set of DSL guidelines as a
qualitative assessment. To ensure the correct functionality of the attack simulations produced

52

Figure 2: DSL guidelines adapted to evaluate MAL-based DSLs [25].

Table 1
Addressed Guidelines in enterpriseLang

ADR stage Addressed in enterpriseLang

Stage 1 G-1.1; G-1.3
Stage 2 G-2.1; G-2.15; G-2.16
Stage 3 -
Stage 4 G-4.2

by enterpriseLang, we propose to use a structured testing method as a quantitative assessment
(developing enterpriseLang is similar to developing source code). Specifically, we calculate the
test coverage of enterpriseLang using the method proposed by Hersén et al. [3]. The calculated
test coverage percentage reflects what parts of the language that have not been fully tested yet
and thus may function wrongly, and the results would indicate if more test cases are needed.

5. Qualitative Assessment

In this section, we related the DSL guidelines presented in Figure 2 to the development of
enterpriseLang as a qualitative assessment, and the result is shown in Table 1.

Stage 1 – Problem Formulation Regarding Stage 1, enterpriseLang was developed to assess
the security level of enterprise systems and support analysis of the security settings that can be
implemented to secure the system effectively (G-1.1). The problem that enterpriseLang tries to
solve can be categorized as a problem-specific type (G-1.3).

Stage 2 – Building, Intervention, and Evaluation Regarding Stage 2, enterpriseLang was
designed based on the MITRE ATT&CK Matrix and tried to cover all the adversary techniques
and mitigations contained within the matrix (G-2.1), while it was not further detailed for a
specific enterprise system. Therefore, it adopts existing domain terms from the MITRE ATT&CK
Matrix for enterprise systems (G-2.16), and there was no direct stakeholder involvement. Finally,

53

regarding the evaluation of enterpriseLang, both unit tests and integration tests (G-2.15) were
used to ensure the correct functionality of the language and demonstrated by two real-world
attack cyber attacks.

Stage 3 – Reflection and Learning Because there were no activities conducted between the
language developers and stakeholders and no learning activities, Stage 3 has not been addressed
in the development of enterpriseLang.
Stage 4 – Formalization of Learning Regarding Stage 4, enterpriseLang was designed

following the DSR guidelines (G-4.2) with the following steps: 1) Identify Problem & Moti-
vate, 2) Define Objectives, 3) Design & Development, 4) Demonstration 5) Evaluation, and 6)
Communication.
To reflect on the development process of enterpriseLang, there is an opportunity for im-

provement, where the guidelines that are not fulfilled by enterpriseLang should be further
investigated. Especially, stakeholders should be involved during the development process of
enterpriseLang, which could help to increase the usability of enterpriseLang and the actual
application of security measures for stakeholders.

6. Quantitative Assessment

To validate enterpriseLang, test cases were designed to check its desired behavior. The tests
confirm that the attack simulations run by enterpriseLang behave as expected and that attacks
and potential mitigations are modeled accurately. However, to what degree these test cases
cover the completeness of the language has not been evaluated.
Hence, we apply the test coverage method proposed by Hersén et al. [3], where common

structural software testing methods were transferred to work with threat models and the
generated simulation data. The statement coverage, branch coverage, and interface-based input
domain modeling in source code testing [27] were transferred to attack step coverage, edge
coverage, and defense coverage. A metric for asset coverage was also proposed for computing
the percentage of compromised assets during an attack simulation [3].
The attack step coverage refers to the percentage of the compromised attack steps covered in

an attack simulation. The asset coverage refers to the percentage of compromised assets during
an attack simulation, where full asset coverage represents that all the attack steps related to
the asset are compromised, and partial asset coverage considers that at least one attack step
related to the asset is compromised. Moreover, the edge coverage refers to the ratio between
the compromised edges (linking either attack steps to each other or a defense to an attack step)
and the number of edges in the modeled system. To calculate the defense coverage, enabling
and disabling defenses may result in different outcomes in multiple executions of an attack
simulation, where the preconditions of the attacker do not change, and also influence the result
whether certain attack steps or edges are compromised.
For the attack scenario presented in Figure 3, given that the attacker has initial access to

phishing and all defenses (i.e., exploitationForClientExecution and userTraining) are disabled, four
attack steps (phishing, spearphishingLink, userExecution, exploitationForClientExecution) and
the three edges between them are compromised; when all the defenses are enabled, only the
attack steps phishing and spearphishingLink can be reached, and only the edge between them

54

User
Bob

& userExecution

userTraining

Service
Adobe Reader

& exploitationForClientExecution

exploitProtection

Browser
Google Chrome

| spearphishingLink

| phishing

Accesses* * Runs* 1

Accesses

1

*
LogsIn1 *

OS

UserAccount

Figure 3: Graphical representation of the threat model used for the example coverage calculations.

Table 2
Attack Step Coverage

Defense enabled Defense disabled ∪
Compromised attack steps 2 4 4
Number of attack steps 4 4 4
Attack step coverage 50% 100% 100%

Table 3
Edge Coverage

Defense enabled Defense disabled ∪
Compromised edges 1 3 3
Number of edges 5 5 5
Edge coverage 20% 60% 60%

Table 4
Asset Coverage

Defense enabled Defense disabled ∪
Compromised asset (partial) 1 3 3
Compromised asset (full) 1 1 1
Number of assets 3 3 3
Partial asset coverage 33.3% 100% 100%
Full asset coverage 33.3% 33.3% 33.3%

is compromised. In this scenario, the attack step coverage is 100% (see Table 2) and the edge
coverage is 60% (see Table 3). Moreover, the overall partial asset coverage is 100%, and the full
asset coverage is 33.3% (see Table 4). Moreover, the defense coverage is 50% because only the
cases that both of the two defenses are enabled and disabled at the same time are considered.
So far, the test coverage result of enterpriseLang is shown in Table 5. The defense coverage is

approximately zero, because the created test cases only considered the case that all the defense

55

Table 5
Test Coverage of enterpriseLang

Partial asset coverage 94.7%
Full asset coverage 10.5%
Attack step coverage 44.4%
Edge coverage 64.2%
Defense coverage ≈ 0%

values are false and tried to form longer attack paths. However, simply running simulations by
enabling and disabling each defense may produce misleading results [3]. Therefore, different
defenses should be enabled to investigate how the opportunities of an attack to be successful
change according to the presence of certain defenses.

7. Discussion

Based on the qualitative assessment result, the guidelines not fulfilled by enterpriseLang can
guide us with its future improvements. For example, G-2.9 is not fulfilled because enterpriseLang
was not designed based on an existing DSL. A possible way to follow this guideline would be to
redesign enterpriseLang so that it embeds an existing language, for example, coreLang [16],
which contains the most common IT entities and attack steps. We would thus solely implement
specific capabilities for enterprise systems that are not covered by coreLang. In addition, based
on the quantitative assessment result, more test cases should be created for the missing parts
reflected by the test coverage value. For example, the Router asset was covered by any test
case, because in enterpriseLang there is no attack step contained in this asset. Therefore, future
work includes exploring enterprise system-related attacks to enrich enterpriseLang.
In addition, our method should not be used in isolation, as we solely cover structural aspects

similar to white box testing. Consequently, we are only able to identify design flaws from the
developer’s point of view. This leads to the fact that the users’ perspective is not reflected and,
thus, missing functionality cannot be discovered. To overcome this, we previously facilitated
real-world attacks [5] to ensure that those can be modeled and simulated with enterpriseLang.
Moreover, consulting experts and conducting surveys (e.g., [25]) could also be done in the future
to further validate the applicability.
The proposed method could also be generalized and used for evaluating other MAL-based

DSLs because they have the same need for evaluating the effectiveness of their languages [28],
and further research is needed to generalize our proposal or to confirm that it works as is.

8. Conclusion

In this paper, we propose an approach to assess the quality of threat modeling languages
and illustrate its application on enterpriseLang, to see if its development process follows the
principles of good language design, and whether to what extent enterpriseLang functions
as expected. The qualitative assessment result could foster better quality of enterpriseLang

56

by fulfilling the missing DSL design guidelines, such as stakeholder involvement. Moreover,
through creating more test cases and achieving higher test coverage, the correct functionality
of enterpriseLang can be ensured.

Acknowledgments

This project has received funding from the European Union’s H2020 research and innovation
programme under the Grant Agreement No. 832907.

References

[1] W. Xiong, R. Lagerström, Threat modeling - a systematic literature review, Computers &
Security 84 (2019) 53–69.

[2] K. Tuma, G. Calikli, R. Scandariato, Threat analysis of software systems: A systematic
literature review, Journal of Systems and Software 144 (2018) 27–294. URL: https://www.
sciencedirect.com/science/article/pii/S0164121218301304.

[3] N. Hersén, S. Hacks, K. Fögen, Towards measuring test coverage of attack simulations, in:
Enterprise, Business-Process and Information Systems Modeling, Springer International
Publishing, 2021, pp. 303–317.

[4] P. Johnson, R. Lagerström, M. Ekstedt, A meta language for threat modeling and attack
simulations, in: 13th International Conference on Availability, Reliability and Security,
ACM, 2018, p. 38.

[5] W. Xiong, E. Legrand, O. Åberg, R. Lagerström, Cyber security threat modeling based
on the MITRE Enterprise ATT&CK Matrix, Software and Systems Modeling (2021). URL:
https://doi.org/10.1007/s10270-021-00898-7.

[6] G. Karsai, H. Krahn, C. Pinkernell, B. Rumpe, M. Schindler, S. Völkel, Design guidelines
for domain specific languages, in: 9th OOPSLA Workshop on Domain-Specific Modeling
(DSM’ 09), 2009, pp. 1–7.

[7] I. Poltronieri Rodrigues, M. de Borba Campos, A. F. Zorzo, Usability evaluation of domain-
specific languages: A systematic literature review, in: Human-Computer Interaction. User
Interface Design, Development and Multimodality, Springer, 2017.

[8] I. Gibbs, S. Dascalu, F. C. Harris, Jr., A separation-based ui architecture with a dsl for role
specialization, Journal of Systems and Software 101 (2015) 69–85.

[9] D. Albuquerque, B. Cafeo, A. Garcia, S. Barbosa, S. Abrahão, A. Ribeiro, Quantifying
usability of domain-specific languages: An empirical study on software maintenance,
Journal of Systems and Software 101 (2015) 245–259.

[10] A. Barisic, V. Amaral, M. Goulão, Usability evaluation of domain-specific languages, in:
Quality of Information and Communications Technology, 2012, pp. 342–347.

[11] J. Venable, J. Pries-Heje, R. Baskerville, A comprehensive framework for evaluation in
design science research, in: Design Science Research in Information Systems. Advances in
Theory and Practice, Springer, 2012, pp. 423–438.

[12] A. R. Hevner, S. T. March, J. Park, S. Ram, Design science in information systems research,
MIS Quarterly 28 (2004) 75–105.

57

[13] Ø. Haugen, P. Mohagheghi, A multi-dimensional framework for characterizing domain
specific languages, in: Proc. of the 7th OOPSLA Workshop on Domain Specific Modeling,
2007, pp. 1–10.

[14] R. Scandariato, K. Wuyts, W. Joosen, A descriptive study of microsoft’s threat modeling
technique (2013).

[15] K. Wuyts, R. Scandariato, W. Joosen, Empirical evaluation of a privacy-focused threat
modeling methodology, Journal of Systems and Software 96 (2014) 122–138.

[16] S. Katsikeas, S. Hacks, P. Johnson, M. Ekstedt, R. Lagerström, J. Jacobsson, M. Wällstedt,
P. Eliasson, An attack simulation language for the it domain, in: Graphical Models for
Security, Springer International Publishing, 2020, pp. 67–86.

[17] S. Hacks, S. Katsikeas, E. Ling, R. Lagerström, M. Ekstedt, powerlang: a probabilistic attack
simulation language for the power domain, Energy Informatics 3 (2020) 1–17.

[18] S. Katsikeas, P. Johnson, S. Hacks, R. Lagerström, Probabilistic modeling and simulation of
vehicular cyber attacks: An application of the meta attack language, in: ICISSP 2019, 2019.

[19] A. Vernotte, P. Johnson, M. Ekstedt, R. Lagerström, In-depth modeling of the unix operating
system for architectural cyber security analysis, in: 2017 IEEE 21st International Enterprise
Distributed Object Computing Workshop (EDOCW), IEEE, 2017, pp. 127–136.

[20] T. Sommestad, M. Ekstedt, H. Holm, The cyber security modeling language: A tool for
assessing the vulnerability of enterprise system architectures, IEEE Systems Journal 7
(2013) 363–373.

[21] W. Xiong, S. Hacks, R. Lagerström, A method for assigning probability distributions in
attack simulation languages, Complex Systems Informatics and Modeling Quarterly (2021)
55–77. URL: https://doi.org/10.7250/csimq.2021-26.04.

[22] M. Ekstedt, P. Johnson, R. Lagerström, D. Gorton, J. Nydrén, K. Shahzad, Securi cad
by foreseeti: A cad tool for enterprise cyber security management, in: 2015 IEEE 19th
International Enterprise Distributed Object Computing Workshop (EDOCW), IEEE, 2015,
pp. 152–155.

[23] K. Peffers, T. Tuunanen, M. A. Rothenberger, S. Chatterjee, A design science research
methodology for information systems research, Journal of Management Information
Systems 24 (2007) 45–77.

[24] J. Venable, J. Pries-Heje, R. Baskerville, Feds: a framework for evaluation in design science
research 25 (2016) 77–89.

[25] A. Author(s), Towards a systematic method for developing meta attack language instances,
in: submitted, 2021.

[26] M. K. Sein, O. Henfridsson, S. Purao, M. Rossi, R. Lindgren, Action design research, MIS
quarterly 35 (2011) 37–56.

[27] P. Ammann, J. Offutt, Introduction to Software Testing: 2nd Edition, Cambridge University
Press, 2016.

[28] J. Horkoff, F. B. Aydemir, F.-L. Li, T. Li, J. Mylopoulos, Evaluating modeling languages:
An example from the requirements domain, in: Conceptual Modeling, Springer, 2014, pp.
260–274.

58

