
Anomaly Detection of Command Shell Sessions based
on DistilBERT: Unsupervised and Supervised
Approaches
Zefang Liu1,∗, John F. Buford1

1JPMorgan Chase, 3223 Hanover St, Palo Alto, CA, 94304, USA

Abstract
Anomaly detection in command shell sessions is a critical aspect of computer security. Recent advances
in deep learning and natural language processing, particularly transformer-based models, have shown
great promise for addressing complex security challenges. In this paper, we implement a comprehensive
approach to detect anomalies in Unix shell sessions using a pretrained DistilBERT model, leveraging
both unsupervised and supervised learning techniques to identify anomalous activity while minimizing
data labeling. The unsupervised method captures the underlying structure and syntax of Unix shell
commands, enabling the detection of session deviations from normal behavior. Experiments on a large-
scale enterprise dataset collected from production systems demonstrate the effectiveness of our approach
in detecting anomalous behavior in Unix shell sessions. This work highlights the potential of leveraging
recent advances in transformers to address important computer security challenges.

Keywords
anomaly detection, keystroke data, command line, Unix shell, DistilBERT

1. Introduction

The complexity of modern computer systems and networks has led to an increasing demand
for efficient and reliable security solutions. Interactive command shells, especially Unix shells,
which provide a powerful interface for system administration, development, and maintenance
tasks, are an essential aspect of many computing environments. However, they can also be
exploited by attackers to gain unauthorized access, escalate privileges, avoid defense detection,
collect sensitive data, and manipulate systems. As a result, anomaly detection in command
shells has become a crucial component of computer security.

Previous studies have utilized various techniques for anomaly detection in command shell
sessions, ranging from simple rule-based methods to more complex machine learning algorithms.
However, most of these approaches rely heavily on predefined features or labeled data from
security experts for training supervised models. Assembling a large, well-labeled dataset can be
time-consuming and labor-intensive, often resulting in a limited scope of detection capabilities
due to the inherent biases in the labeling process.

CAMLIS’23: Conference on Applied Machine Learning for Information Security, October 19–20, 2023, Arlington, VA
∗Corresponding author.
Envelope-Open zefang.liu@jpmchase.com (Z. Liu)
Orcid 0000-0003-1947-3249 (Z. Liu)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:zefang.liu@jpmchase.com
https://orcid.org/0000-0003-1947-3249
https://creativecommons.org/licenses/by/4.0
https://ceur-ws.org
https://ceur-ws.org

Recent advances in deep learning and natural language processing (NLP) have enabled new
opportunities for addressing complex security challenges. In particular, transformer-based
models, such as BERT (Bidirectional Encoder Representations from Transformers) [1] and GPT
(Generative Pretrained Transformer) [2], have achieved state-of-the-art performance across
various NLP tasks. These models have the potential to enhance computer security by enabling
more effective and adaptable anomaly detection systems that can learn from large-scale, diverse
data sources.

In enterprise production environments, access to command shells is treated as a privileged
activity because of the potential for misuse of system commands. Commands with the potential
for misuse are well known. Specific commands may be a priori disabled. Attack techniques have
been compiled, for example, in the MITRE ATT&CK® framework. Enterprises can implement
rule-based detection using these resources. Consequently, the benefit of the anomaly detection
model is to automatically identify command patterns that are outliers with respect to the overall
set of sessions that would not be detected by the rule-based approach. Due to the volume, length,
and complexity of shell sessions, manual detection of outliers is impractical. An automatic
process is needed to assign anomaly scores to sessions, where sessions with high anomaly
scores can be prioritized for further investigation. In this paper, we apply a transformer-based
model for anomaly detection in Unix shell sessions with a pretrained DistilBERT model. Our
method employs both unsupervised and supervised learning techniques, aiming to deliver a
robust and flexible solution for identifying anomalous activity while reducing the burden on
manual labels from experts.

DistilBERT [3], a lighter and more efficient version of the BERT [1], has demonstrated
exceptional performance across a wide range of NLP tasks. By pretraining a DistilBERT model
on a large dataset of Unix shell sessions, we capture the underlying structure and syntax
of Unix shell commands and allow the model to identify deviations of shell sessions from
normal activity. The unsupervised method uses an ensemble model to calculate anomaly scores,
detecting potential security threats without requiring labeled data. We further experimented
with applying the unsupervised model to specific command subshells, such as HDFS, SQL,
Spark, and Python, which are notable for having specific subshell command syntaxes. To
further enhance the precision of our anomaly detection system, we implement a supervised
approach by fine-tuning the pretrained DistilBERT model on a small set of labeled Unix shell
sessions with suspicious keywords, which allows the model to learn from session labels and
distinguish normal and anomalous activity more effectively. The overall pipeline is shown in
the Figure 1 for both unsupervised ans supervised methods.

The main contributions of this paper are as follows:

1. We apply a comprehensive anomaly detection framework for Unix shell sessions based
on the pretrained DistilBERT model and ensemble anomaly detectors, addressing an
important problem in computer security.

2. We conduct experiment and demonstrate the effectiveness of unsupervised approach
using an ensemble method to compute anomaly scores for a large-scale enterprise dataset,
enabling the identification of suspicious activities without extensive manual labeling.

3. We evaluate the performances of supervised fine-tuned models on a few-shot set of labeled
sessions, highlighting the adaptability and accuracy of our supervised approach.

Raw Keystroke
Data

Unix Prompt
Extraction

Unix Com-
mand

Extraction

Unix Com-
mand Cleaning

DistilBERT
Pretraining

Unix Session
Embedding

Unsupervised
Anomaly
Detection

Annotated
Suspicious
Sessions

DistilBERT
Fine-Tuning
with SetFit

Supervised
Session

Classification

Predicted
Suspicious
Sessions

Figure 1: Pipeline of the command shell session anomaly detection with both unsupervised and
supervised methods.

The remainder of this paper is organized as follows: Section 2 provides related work in
command shell anomaly detection; Section 3 presents the data, including dataset description,
differences from previous datasets, data quality issues, and data cleaning procedures; Section
4 details our methodology, including the unsupervised and supervised approaches; Section 5
presents the experimental results and examples of suspicious activities; and Section 6 concludes
the paper and outlines possible future work.

2. Related Work

In this section, we discuss the existing literature related to detecting anomalies in Unix shell
commands. We first review research in log anomaly detection and then masquerade detection.
We also highlight the gaps in previous research that our proposed approach aims to address.

2.1. Log Anomaly Detection

Log anomaly detection [4, 5] is an essential aspect of computer security since system logs provide
important information about system activity and user behavior. By identifying anomalous
patterns in logs, security analysts can detect potential threats, investigate incidents, and prevent
service interruptions and data breaches. Deep learning techniques, including Long Short-Term
Memory (LSTM) networks [6] and transformers [7], have been applied to log anomaly detection,
such as DeepLog [8], LogRobust [9], LogBERT [10], and NeuralLog [11], demonstrating their
ability to learn intricate patterns and long-range dependencies.

However, these methods are primarily designed for analyzing system logs, which tend to be
close to human languages in terms of syntax and semantics. In contrast, Unix shell commands
exhibit distinct patterns and structures that may not be effectively captured by existing log
anomaly detection approaches and pretrained language models. This limitation highlights the
need for specialized methods tailored to command shell anomaly detection.

2.2. Masquerade Detection

Masquerade detection [12] is a specific type of anomaly detection that focuses on identifying
unauthorized users who have gained access to legitimate user’s accounts or privileges and are
attempting to impersonate them. The goal is to detect differences in user behavior between
sessions that may indicate the presence of an attacker. In the context of Unix shell sessions,
masquerade detection aims to distinguish between the normal activities of the genuine user and
the suspicious actions of the masquerader. Early approaches to masquerade detection relied
on traditional machine learning techniques, such as Naive Bayes [13, 14, 15], Support Vector
Machines (SVMs) [15, 16], and Hidden Markov Models (HMM) [17]. Deep learning techniques
[18, 19], including Convolutional Neural Networks [20], Temporal Convolutional Networks
[21], and LSTM [20], have also been applied to masquerade detection, leading to improved
detection accuracies.

However, these masquerade detection methods are not well-suited for detecting suspicious
activities in Unix shell sessions. The goal of masquerade detection is to find imitators, while
the command shell anomaly detection is trying to search suspicious or exploitable command
patterns. Besides, the supervised method used in previous research can only detect anomalous
sessions based on predefined rules and features from experts, which limit their flexibility and
adaptability and make it challenging to identify new or unknown threats in command shell
sessions.

3. Data

In this section, we describe the data used for our study, including the data description and data
preprocessing. Important steps for extracting and cleaning commands from the raw keystroke
data are highlighted. We also discuss the characteristics of the data that make it different from
previous Unix shell datasets.

3.1. Data Description

Previous datasets for Unix shell commands include the SEA dataset [22], Greenberg dataset
[23], PU dataset [24], and NL2Bash [25]. The SEA dataset, introduced by Schonlau et al. [22], is
a widely recognized benchmark, consisting of Unix commands from 50 users, with potential
masquerade attacks seeded. The Greenberg dataset, collected by Greenberg et al. [23], contains
Unix commands from 168 different users of the Unix C shell, and has been used to study user
behavior and evaluate masquerade detection models. The PU dataset, developed by Lane et al.
[24], contains 9 sets of sanitized user data collected from Purdue university command histories
of 8 users in 2 years. The NL2Bash dataset, collected by Lin et al. [25], contains around 10,000
English sentence and bash command pairs. These datasets have contributed significantly to
the development and evaluation of various Unix shell anomaly detection techniques, especially
in the masquerade detection area. While each dataset offers unique insights, they also have
their limitations, such as being outdated, only with truncated commands but without command
options and subshells, lacking diversity of command usages, or not providing sufficient data for
certain types of real exploits or attacks. Consequently, our study aims to leverage a large-scale,

unlabeled dataset of Unix shell commands from real operating system users to explore novel
anomaly detection approaches and address the limitations of previous datasets.

The raw data used in the research includes 90 days of Unix keystroke sessions from over
15,000 users, which have about 3 million activity objects. Among these activities, around 2.4
million objects are non-empty interactive sessions. However, the raw data have several data
characteristics, including mixed shell prompts, command inputs, and command outputs, various
shell prompts across sessions and within session, truncated long command lines with varying
line lengths, various command aliases across sessions, mixed background process outputs with
prompts and inputs, and missed backspaces and tab keys. In order to prepare this dataset for
detecting anomalies in the next step, we developed heuristics to extract and clean commands
from the raw data.

3.2. Data Preprocessing

The anomaly detector for shell commands needs clean command sessions to avoid introducing
much noise into the model. However, the raw keystroke log dataset is a mixture of commands
inputted by users and also responses outputted from systems. In order to increase the anomaly
detection accuracies and also decrease the computing time, we extract user command inputs
from the raw data and clean these commands. A heuristic algorithm is developed for this data
preprocessing function, which is introduced briefly as follows.

In order to extract commands from the raw data, we need to search the shell prompts first.
One conventional way is using the regular expressions. However, in practice, different sessions
can have different shell prompts, and even in one session, the shell prompt can vary based on
current working directories or subshells. Handcrafting regular expressions for each session is a
tedious and non-adaptive work. To overcome these drawbacks, we create a list of 140 common
Unix commands and a list of prompt terminal symbols ($, #, >). More terminal symbols were
tested, but the probability of mismatching increased. For each input line, the first occurring
prompt terminal symbol is located, and the following word is tested against the common
command set. If this word is a known common command, the prompt is saved, otherwise it
is skipped. To avoid mismatching prompts, several rules are applied for fixing corner cases,
such as removing time prefixes, checking for balanced brackets in each prompt, and excluding
environment variables.

After extracting session prompts, we then extract commands from the raw data, where we
search for known prompts from this session and then extract the command line after the prompt.
Additional steps are applied for handling several special cases, such as removing text editor
buffers and concatenating wrapped multiple-line commands. Some meta data are also collected
for down-stream use, including numbers of output lines and error messages. After extracting
commands and dropping duplicates, we obtain 1.15 million sessions.

The last step is the command cleaning process. The main goal of this step is to reduce the data
noise, so the anomaly detection model can give more precise results. We apply several filters for
cleaning the extracted shell commands, including removing command lines with error messages,
dropping command editing buffers and shell completions, deleting long consecutive spaces and
over-repeated characters, filtering command names with regular expressions, masking numbers
and special words, and cleaning cyclic commands usually generated by loops from shell scripts.

The cleaned command shell sessions are then used in the next stage for both unsupervised an
supervised approaches.

4. Methodology

In this section, we outline the methodology of our proposed anomaly detection approach
for Unix shell sessions. Our approach employs both unsupervised and supervised learning
techniques. We provide a detailed description of the unsupervised ensemble anomaly detector
based on the pretrained DistilBERT model and also the supervised fine-tuning of the DistilBERT
model using a few labeled data.

4.1. Unsupervised Approach

The unsupervised approach of our research involves pretraining a DistilBERT [3] model from
Hugging Face [26] on Unix shell commands and constructing an ensemble anomaly detector
based on the session embeddings from the pretrained DistilBERT. This methodwas first proposed
by CrowdStrike [27, 28] for command lines from various platforms. The unsupervised model
discovers new anomaly patterns for manual review.

Since the Unix shell commands are different from human languages, we pretrain a language
model from scratch with the Unix shell commands instead of using an already existing pretrained
model. BERT [1] and its lighter-weight variant DistilBERT [3] are state-of-the-art encoder-
based transformer models that have shown remarkable performance in various natural language
processing tasks, especially in understanding context and capturing complex language patterns.
DistilBERT [3] is selected in this research due to its balance of performance and efficiency. The
WordPiece [1], the default sub-word tokenizer for DistilBERT, with a dictionary size of 30,000 is
trained for tokenizing the Unix sessions, while several other dictionary sizes were experimented.
Then the tokens are inputted into the DistilBERT model, and the model is pretrained for the
masked language modeling (MLM) task to capture the inherent structure and dependencies
within command sequences. The cased DistilBERT model is selected since the Unix shell is
case-sensitive. This unsupervised pretraining allows the model to learn general representations
of command sequences without relying on labeled data. Once the DistilBERT mode has been
pretrained, the last hidden states are used as the embeddings of the Unix shell sessions. At the
end of the pretraining process, we have one contextual embedding for each command session,
which represents the higher-level features of the command sequences.

To detect anomalies of Unix sessions in an unsupervised approach without fine-tuning a
classification layer, four outlier detectors from PyOD [29] are applied, including the principal
component analysis (PCA) [30, 31], isolation forest (IF) [32, 33], copula-based outlier detection
(COPOD) [34], and autoencoders (AE) [30], by following CrowdStrike’s framework [27, 28].
These four outlier detection models are trained with the session embeddings, and their decision
scores are normalized for each outlier detector. For each session, all four decision scores are
averaged to get the final anomaly score of that session. The anomaly scores represent how
deviant of one command session from the overall collection of sessions. Sessions with high
anomaly scores are considered outliers, which may contain unusual command syntaxes or
patterns.

4.2. Supervised Approach

The supervised part of our approach involves fine-tuning the pretrained DistilBERT model
with labeled data to improve its performance in distinguishing between normal and suspicious
command sequences as a binary classifier. We fine-tune the pretrained DistilBERT with SetFit
(Sentence Transformer Fine-tuning) [35], which is an efficient and prompt-free framework for
few-shot fine-tuning of sentence transformers. In SetFit, the transformer can be fine-tuned on a
small number of text pairs in a contrastive Siamese manner with high accuracy. The results
of the model fine-tuned by SetFit are compared with the original fine-tuned DistilBERT and a
trained logistic regressor with fixed session embedding.

In order to fine-tune the pretrained model, examples of labeled sessions are required. Instead
of labeling sessions manually, we create a table of suspicious keywords developed based on
Uptycs’s work [36] to cover MITRE ATT&CK® techniques [37, 38] commonly used by attackers.
Those suspicious keywords are presented in the Table 1 with their corresponding technique
IDs and names. Those suspicious keywords are searched in each Unix shell sessions, and
those sessions with the number of unique suspicious keywords higher than the threshold
are considered as anomalies. The setting of the labeled dataset is discussed further in the
experimental results. Besides the suspicious keywords, we also created regular expressions
to tag sessions with more ATT&CK techniques [37, 38]. Those tags are used for the session
annotation and analysis.

Upon completing the supervised fine-tuning phase, we evaluate the performance of our
anomaly detection approach using the testing data. We assess the model’s effectiveness in
detecting normal and suspicious command sequences by calculating various performance
metrics, including precision, recall, and F1 score. The evaluations are discussed in the next
section.

5. Experimental Results

In this section, we present the experimental results for both unsupervised and supervised
anomaly detection methods applied to Unix shell commands. We first evaluate the unsupervised
model with the pretrained DistilBERT embedding and the ensemble anomaly detector on the
unlabeled data and then evaluate performance of the supervised model with labeled sessions.

5.1. Unsupervised Approach Results

In order to evaluate the unsupervisedmodel and understand its performance, several analyses are
done, including visualizing distributions of anomaly scores and embedding vectors, investigating
relations between the anomaly scores and numbers of tokens and command lines, and also
comparing anomaly scores of the common shell commands.

The distribution of anomaly scores is shown in the Figure 2a. Since the anomaly scores have
already been standardized, the mean and standard deviation of the distribution are 0 and 1
respectively. The distribution of anomaly scores is close to normal distribution, where most
of sessions are observed around mean, while some outliers have higher anomaly scores than
the most sessions. Besides, the anomaly scores from four anomaly detectors for the top 100

Table 1
Suspicious keywords and MITRE ATT&CK® techniques.

ATT&CK Tech-
nique ID

ATT&CK Technique Name Suspicious Keywords

T1018 Remote System Discovery arp, ping, ip, hosts
T1033 System Owner/User Discovery whoami, who, w, users, USER
T1049 System Network Connections Discovery netstat, lsof, who, w
T1016 System Network Configuration Discovery arp, ipconfig, ifconfig, nbtstat, netstat,

route, ping, ip
T1082 System Information Discovery df, uname, hostname, env, lspci, lscpu,

lsmod, dmidecode, systeminfo
T1087 Account Discovery id, groups, lastlog, ldapsearch
T1069 Permission Groups Discovery groups, id, ldapsearch
T1040 Network Sniffing tcpdump, tshark
T1574.006 Hijack Execution Flow: Dynamic Linker Hi-

jacking
ld.so.preload, LD_PRELOAD

T1547.006 Boot or Logon Autostart Execution: Kernel
Modules and Extensions

modprobe, insmod, lsmod, rmmod, mod-
info

T1136 Create Account useradd, adduser
T1053.003 Scheduled Task/Job: Cron crontab, cron
T1489 Service Stop kill, pkill
T1562.001 Impair Defenses: Disable or Modify Tools systemctl
T1105 Ingress Tool Transfer curl, scp, sftp, tftp, rsync, finger, wget
T1222.002 File and Directory Permissions Modification:

Linux and Mac File and Directory Permissions
Modification

chown, chmod, chgrp, chattr

T1003.008 OS Credential Dumping: /etc/passwd and
/etc/shadow

passwd, shadow

T1070.003 Indicator Removal: Clear Command History .bash_history, HISTFILE, HISTFILESIZE
T1548.003 Abuse Elevation Control Mechanism: Sudo

and Sudo Caching
sudo, sudoers

T1546.004 Event Triggered Execution: Unix Shell Config-
uration Modification

profile, profile.d, .profile, .bash_profile,
.bash_login, .bashrc, .bash_logout

anomalies are also shown in the Figure 2b, where the COPOD usually has the highest anomaly
scores, while the IF tends to be the lower side and with a higher variance. For most sessions,
these four anomaly detectors show consistent behaviors and assign high anomaly scores to
these sessions.

To further understand the behavior of the unsupervised model, the anomaly scores are
presented with the number of tokens and the number of command lines in the Figure 3a
and Figure 3b. Generally speaking, a session with more tokens and more command lines
can have higher anomaly score. It is because usually shorter sessions only have the simple
syntax for straightforward and repetitive daily usages, while longer sessions can have long
command sequences to perform complicated and uncommon tasks, which are preferred by the
unsupervised model due to their unusual command structure and syntax.

At the end of unsupervised model analysis, we show the anomaly scores for the top 50
common commands in the Figure 4. Those anomaly scores are weighted averaged of the session
anomaly scores, where these commands appear. Most common commands, such as “ls” “exit”,

2 1 0 1 2 3 4 5 6
Anomaly Score

0

10000

20000

30000

40000

Nu
m

be
r o

f S
es

sio
ns

(a) averaged anomaly scores

0 20 40 60 80 100
Session Index

3.0

3.5

4.0

4.5

5.0

5.5

6.0

An
om

al
y

Sc
or

e Average
PCA
COPOD
IF
AE

(b) all anomaly scores

Figure 2: Distributions of averaged anomaly scores and all anomaly scores from four anomaly detection
model.

100 101 102 103 104

Number of Tokens

0

1

2

3

4

5

An
om

al
y

Sc
or

e

(a) number of tokens

100 101 102 103

Number of Command Lines

0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
An

om
al

y
Sc

or
e

(b) number of command lines

Figure 3: The relations of anomaly scores with the number of tokens and the number of command
lines.

“bash”, and so on, have lower anomaly scores, while “alias” and “l” have higher anomaly scores.
In most cases, there is no clear explanation about the relation between the command names and
their anomaly scores, since those anomaly scores are averaged from their sessions and can be
affected by the session structures. But in general, infrequent commands have higher anomaly
scores.

In summary, a session with a high anomaly score does not always mean it has the suspicious
activity. However, anomaly scores can be used for prioritizing command sessions for expert
analyses and also help monitoring experts discover new suspicious patterns. The unclear
relations and uncertainties of the unsupervised model results motivate us to build and evaluate
supervised models, which are discussed next. More investigation of relations between anomaly
scores and suspicious activities and also the language structure of shell commands can be done

ls cd ps pw
d vi ca
t

ex
it ta
il

gr
ep les
s

ba
sh

cle
ar cp rm df ll

aim
ho

stn
am

e
ex

po
rt ss
h mv

hd
fs

ch
mod
da

te sh vim du
sq

lpl
usto
p

fin
d

mkd
ir

vie
w

his
to

ry kil
l

ec
ho

mor
e

no
hu

p
log

ou
t

sc
p git

up
tim

e
rp

m
zg

re
p

sft
p

ha
do

op
so

ur
ce

ali
as

loc
at

e l
pin

g

Command Name

0.0

0.5

1.0

1.5

2.0

2.5
An

om
al

y
Sc

or
e

Figure 4: Averaged anomaly score for common command names.

in the future research.
In addition to the Unix shell, similar analyses are also done for subshell commands. During

the command cleaning, we removed subshells which have different prompts than the Unix shells,
such as HDFS, Spark, SQL, and Python. Those subshells are extracted separately, where an
unsupervised anomaly detector in the same structure is applied to each subshell. The anomaly
scores are assigned to subshell sessions, where specific exploits are also scanned through them.
Analyzing the experiment results from subshell anomaly detection is beyond the scope of this
paper.

5.2. Supervised Approach Results

To evaluate the supervised models, we label the command sessions by the number of suspicious
keywords as described in the methodology. If one session has at least three unique suspicious
keywords, it is considered as an abnormal session. However, if one session has zero suspicious
keywords, it is labeled as a normal session. Other sessions are labeled as the abstained session,
which are removed from model evaluations, since there is no strong criterion to classify them
into either class. The labeled dataset is split into the training and testing sets by 90:10, and the
number of sessions in each class are shown in the Table 2. During experiments, we use the
same number of normal and abnormal sessions from the training data and combine them into a
few-shot training set.

Table 2
Number of sessions in the normal, abnormal, and abstained classes.

Class Number of Unique Suspi-
cious Keywords

Number of Samples Training Set
(90%)

Testing Set
(10%)

Normal = 0 790,363 711,327 79,036
Abnormal >= 3 28,413 25,571 2,842
Abstained (no label) In between 335,322 - -
Total - 1,154,098 736,898 81,878

Since the evaluation results from a small training set is unstable, we run 5 experiments for
each model and each number of samples per class. For models fine-tuned with SetFit [35], we

use the batch size 16, learning rate 1e-5, number of iterations 20 (number of text pairs), and
train each model for 1 epoch. For fine-tuned DistilBERT models, we use the learning rate 1e-5,
and each model is trained for 5 epochs. The averaged precisions, recalls, and F1 scores are
reported in the Figure 5 and Table 3. The fine-tuned SetFit model with 2048 samples per class
shows the best result, which is higher than the fine-tuned DistilBERT with the same training
data size. The fixed DistilBERT embedding with logistic regression gives the lowest result. The
observation shows the advantage of SetFit for fine-tuning pretrained models when the labeled
data are limited. Also, the model performance increases as the number of samples per class
increasing. The experimental results of supervised model show the feasibility of creating a
small set of manually labeled command sessions, fine-tuning a pretrained model with SetFit,
and then using it for classifying more sessions automatically.

0 250 500 750 1000 1250 1500 1750 2000
Number of Samples per Class

0.0

0.2

0.4

0.6

0.8

1.0

F1
 S

co
re

Logistic Regression
Fine-tuned DistilBERT
Fine-tuned DistilBERT with SetFit

Figure 5: F1 scores of three supervised models with different training sizes.

Table 3
Evaluation results of three supervised models with different training sizes.

Model Logistic Regression Fine-tuned DistilBERT Fine-tuned DistilBERT with SetFit

Number of Precision Recall F1 Score Precision Recall F1 Score Precision Recall F1 Score
Samples
per Class

16 0.1464 0.7860 0.2454 0.1632 0.5578 0.2513 0.1569 0.8287 0.2622
32 0.1625 0.8248 0.2711 0.1995 0.6977 0.3036 0.2059 0.8930 0.3331
64 0.1713 0.8754 0.2862 0.1625 0.8418 0.2716 0.2712 0.9484 0.4210
128 0.1922 0.8849 0.3155 0.1703 0.9098 0.2864 0.3909 0.9758 0.5563
256 0.2070 0.8890 0.3356 0.3230 0.9663 0.4840 0.4819 0.9850 0.6459
512 0.2308 0.9027 0.3676 0.4900 0.9774 0.6524 0.5845 0.9866 0.7337
1024 0.2631 0.9188 0.4090 0.6483 0.9854 0.7819 0.7134 0.9900 0.8290
2048 0.2944 0.9267 0.4467 0.7534 0.9899 0.8555 0.7934 0.9894 0.8802

5.3. Session Annotations and Examples

Besides experiments and evaluations of unsupervised and supervised models, we also annotated
sessions with MITRE ATT&CK® techniques in addition to previously mentioned suspicious
keywords and anomaly scores. These annotations can help cybersecurity experts recognize and
analyze suspicious activity.

During the annotation process, Unix shell sessions are labeled by searching 58 MITRE
ATT&CK® techniques with corresponding regular expressions. For each technique, we search
for specific command usages and file accesses. The distributions of techniques are shown in
Figure 6, and the tactics are shown in Figure 7. The most common techniques are T1057 Process
Discovery, T1082 System Information Discovery, and T1105 Ingress Tool Transfer, although
those sessions with less-common techniques are more interesting to be analyzed for anomaly
detection.

T1
05

7
T1

08
2

T1
10

5
T1

22
2.

00
2

T1
08

3
T1

07
0.

00
4

T1
48

9
T1

48
5

T1
01

8
T1

04
9

T1
08

7.
00

1
T1

56
0.

00
1

T1
03

3
T1

06
9.

00
1

T1
01

6
T1

54
3.

00
2

T1
54

6.
00

4
T1

55
2.

00
4

T1
05

3.
00

3
T1

00
3.

00
7

T1
52

9
T1

48
6

T1
00

3.
00

8
T1

05
3.

00
2

T1
05

3.
00

6
T1

09
8.

00
4

T1
55

3.
00

4
T1

11
3

T1
56

2.
00

1
T1

56
2.

00
3

T1
61

4.
00

1
T1

55
2.

00
1

T1
55

2.
00

3
T1

04
0

T1
54

8.
00

1
T1

07
0.

00
3

T1
00

7
T1

54
7.

00
6

T1
21

8
T1

20
1

T1
56

2.
00

6
T1

08
7.

00
2

T1
06

9.
00

2
T1

13
6.

00
1

T1
07

0.
00

2
T1

07
0.

00
7

T1
04

6
T1

54
8.

00
3

T1
56

2
T1

57
4.

00
6

T1
54

6.
00

5
T1

03
7.

00
4

T1
11

5
T1

56
2.

00
4

T1
13

5
T1

54
7.

01
3

T1
54

6.
01

6
T1

55
8

Technique

0

100000

200000

Nu
m

be
r o

f S
es

sio
ns

Figure 6: Number of sessions for different MITRE ATT&CK® techniques.

0 100000 200000 300000 400000
Impact

Exfiltration
Command and Control

Collection
Lateral Movement

Discovery
Credential Access
Defense Evasion

Privilege Escalation
Persistence

Execution
Initial Access

Resource Development
Reconnaissance

Ta
ct

ic

Count

Figure 7: Number of sessions for different MITRE ATT&CK® tactics.

Three session examples with high anomaly scores are selected and presented in the Table 4-6,
where ATT&CK techniques are highlighted in the blue color with suspicious keywords in the
red color. The first example in the Table 4 shows remote command execution of transient web
server with potential for data exfiltration. The second example in the Table 5 gives a potential
data exfiltration and credential exposure subject to discovery via process discovery. And the

last example in the Table 6 illustrates disk clear and boot load configuration changes.

Table 4
An example of remote command execution of transient web server with potential for data exfiltration.

Activity id = *1e1BD9. Anomaly score = 1.8919. Suspicious keywords = [kill: 3, wget: 21]

1 <lines removed>
2 salt "WH" cmd.run "python -m SimpleHTTPServer # --directory

/sqldata/ms_backups/" bg=trues/WH_test_db_FU
3 salt "WH" cmd.run "ps aux | grep '[S]impleHTTPServer #' | awk '{print $#}'

|xargs kill –9 "/WH_test_db_FUWH:
4 -> [T1057: Process Discovery, T1489: Service Stop]
5 salt "WH" cmd.run "cd /sqldata/dbmigration;wget http://<host:port>//sqldata/ms_backups/WH_test_db_FU
6 -> [T1105: Ingress Tool Transfer]
7 <lines removed>

Details:
Line 2: launch transient web server on remote host.
Line 3: terminate the server.
Line 4 and 6: ATT&CK tags inserted by processing pipeline.
Line 5: transfer data from web server using wget.

Table 5
An example of potential data exfiltration and credential exposure subject to discovery via process
discovery.

Activity id = *1c01C8. Anomaly score = 1.9754. Suspicious keywords = [curl: 12]

1 <lines removed>
2 curl -T server_support.tar.gz -u<username>:<plaintext_credentials>

<externalhost> /dropzone/uploads
3 -> [T1105: Ingress Tool Transfer]
4 <lines removed>

6. Conclusions

Anomaly detection for interactive command shells is a complex problem. Detection of anomalies
is needed as a cybersecurity safeguard because privileged access at the shell level provides the
opportunity for a range of attacks that threaten critical enterprise infrastructure, data, and
services. On the other hand, prevention of such threats by locking system access prevents
important operations activities like upgrades, change management, and outage investigation
and remediation.

Prior research has been limited by available datasets. We presented the first published results
on keystroke anomaly detection using an enterprise-scale dataset captured from production
systems over a 90-day period. The extent of the dataset, 1.15 million sessions captured from over
15,000 users, demonstrates the need for automated anomaly detection. The dataset came with
important data extraction and cleaning issues but provides a rich cross-section of enterprise

Table 6
An example of disk clear and boot load configuration changes.

Activity id = *b41A0E. Anomaly score = 3.1271. Suspicious keywords = [chmod: 2, df: 1, wget: 1]

1 < lines removed >
2 ansible all -i <INVENTORY> -m shell -a "uptime;grep Start

/etc/INSTALL_CLASS;cat /etc/redhat-release" -o>
3 -> [T1082: System Information Discovery]>
4 ansible all -i <INVENTORY> -m shell -a "cd /root;chmod HFF

diskwipe.sh;./diskwipe.sh" -b>
5 -> [T1222.002: File and Directory Permissions Modification - Linux and Mac File

and Directory Permissions Mod]>
6 ansible all -i <INVENTORY> -m shell -a "/sbin/service ambari-agent restart"

-become -b>
7 <lines removed>>
8 ansible all -i <INVENTORY> -m shell -a "cd /boot/grub#;cp -p grub.cfg

grub.cfg.bkp" -b>
9 ansible all -i <INVENTORY> -m shell -a "/sbin/grubby --args=transparent_hugepage=never

--update-kernel=ALL " -b>
10 <lines removed>

Details:
Lines 1, 7, 10 omitted for brevity.
Line 3 and 5 are automatic annotations added by pipeline.
Line 2: remote command to check system details.
Line 4: remote command to clear disk prior to install.
Line 6: restart Hadoop monitoring agent.
Line 8, 9: modify boot loader.

operations activities. Notably, the monitored infrastructure in the dataset excludes network
appliances and specialized embedded systems and is otherwise representative of widely used
information technology.

Past research has also been limited by available models. We presented the first experimental
results of using a machine-learning transformer model, specifically DistilBERT, for keystroke log
anomaly detection of Unix shells, in both unsupervised and supervised approaches. Although
the dataset is unlabeled, we tagged each session using two existing schemes: the MITRE
ATT&CK® techniques and suspicious keywords. Unix shell sessions with high anomaly scores
were then cross-checked with the tags as part of validating the utility of the anomaly model
for operations uses. Model output was also compared with rule-based log analysis scripts used
by operations teams. The results of the cross-check show that the outliers found by the model
contain significant cases not found in either the tagging or existing analysis scripts. More future
research can be done for designing specific tokenizers for shell commands, understanding the
implicit relations between anomaly scores and suspicious activities, and analyzing subshell
command anomalies.

References

[1] J. Devlin, M.-W. Chang, K. Lee, K. Toutanova, Bert: Pre-training of deep bidirectional
transformers for language understanding, arXiv preprint arXiv:1810.04805 (2018).

[2] A. Radford, K. Narasimhan, T. Salimans, I. Sutskever, et al., Improving language under-
standing by generative pre-training (2018).

[3] V. Sanh, L. Debut, J. Chaumond, T. Wolf, Distilbert, a distilled version of bert: smaller,
faster, cheaper and lighter, arXiv preprint arXiv:1910.01108 (2019).

[4] R. B. Yadav, P. S. Kumar, S. V. Dhavale, A survey on log anomaly detection using deep
learning, in: 2020 8th International Conference on Reliability, Infocom Technologies and
Optimization (Trends and Future Directions)(ICRITO), IEEE, 2020, pp. 1215–1220.

[5] V.-H. Le, H. Zhang, Log-based anomaly detection with deep learning: How far are we?,
in: Proceedings of the 44th international conference on software engineering, 2022, pp.
1356–1367.

[6] S. Hochreiter, J. Schmidhuber, Long short-term memory, Neural computation 9 (1997)
1735–1780.

[7] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, I. Polo-
sukhin, Attention is all you need, Advances in neural information processing systems 30
(2017).

[8] M. Du, F. Li, G. Zheng, V. Srikumar, Deeplog: Anomaly detection and diagnosis from
system logs through deep learning, in: Proceedings of the 2017 ACM SIGSAC conference
on computer and communications security, 2017, pp. 1285–1298.

[9] X. Zhang, Y. Xu, Q. Lin, B. Qiao, H. Zhang, Y. Dang, C. Xie, X. Yang, Q. Cheng, Z. Li, et al.,
Robust log-based anomaly detection on unstable log data, in: Proceedings of the 2019 27th
ACM Joint Meeting on European Software Engineering Conference and Symposium on
the Foundations of Software Engineering, 2019, pp. 807–817.

[10] H. Guo, S. Yuan, X. Wu, Logbert: Log anomaly detection via bert, in: 2021 international
joint conference on neural networks (IJCNN), IEEE, 2021, pp. 1–8.

[11] V.-H. Le, H. Zhang, Log-based anomaly detection without log parsing, in: 2021 36th
IEEE/ACM International Conference on Automated Software Engineering (ASE), IEEE,
2021, pp. 492–504.

[12] M. Bertacchini, P. Fierens, A survey on masquerader detection approaches, in: Proceedings
of V Congreso Iberoamericano de Seguridad Informática, Universidad de la República de
Uruguay, 2008, pp. 46–60.

[13] R. A. Maxion, T. N. Townsend, Masquerade detection using truncated command lines, in:
Proceedings international conference on dependable systems and networks, IEEE, 2002,
pp. 219–228.

[14] R. A. Maxion, Masquerade detection using enriched command lines, in: 2003 International
Conference on Dependable Systems and Networks, 2003. Proceedings., IEEE Computer
Society, 2003, pp. 5–5.

[15] K. Wang, S. J. Stolfo, One-class training for masquerade detection, in: Workshop on Data
Mining for Computer Security, 2003.

[16] H.-S. Kim, S.-D. Cha, Empirical evaluation of svm-based masquerade detection using unix
commands, Computers & Security 24 (2005) 160–168.

[17] J. Liu, M. Duan, W. Li, X. Tian, Hmms based masquerade detection for network security
on with parallel computing, Computer Communications 156 (2020) 168–173.

[18] W. Elmasry, A. Akbulut, A. H. Zaim, Deep learning approaches for predictive masquerade
detection, Security and Communication Networks 2018 (2018).

[19] S. Yuan, X. Wu, Deep learning for insider threat detection: Review, challenges and
opportunities, Computers & Security 104 (2021) 102221.

[20] A. A. Azeezat, O. S. Adebukola, A.-A. Adebayo, O. B. Olushola, A conceptual hybrid
model of deep convolutional neural network (dcnn) and long short-term memory (lstm)
for masquerade attack detection, in: Information and Communication Technology and
Applications: Third International Conference, ICTA 2020, Minna, Nigeria, November
24–27, 2020, Revised Selected Papers 3, Springer, 2021, pp. 170–184.

[21] H. Zhai, Y. Wang, X. Zou, Y. Wu, S. Chen, H. Wu, Y. Zheng, Masquerade detection based
on temporal convolutional network, in: 2022 IEEE 25th International Conference on
Computer Supported Cooperative Work in Design (CSCWD), IEEE, 2022, pp. 305–310.

[22] M. Schonlau, W. DuMouchel, W.-H. Ju, A. F. Karr, M. Theus, Y. Vardi, Computer intrusion:
Detecting masquerades, Statistical science (2001) 58–74.

[23] S. Greenberg, Using unix: Collected traces of 168 users, Technical Report, Research Report
88/333/45, Department of Computer Science, University of Calgary, Calgary, Alberta, 1988.

[24] T. Lane, C. E. Brodley, An application of machine learning to anomaly detection, in:
Proceedings of the 20th national information systems security conference, volume 377,
Baltimore, USA, 1997, pp. 366–380.

[25] X. V. Lin, C. Wang, L. Zettlemoyer, M. D. Ernst, Nl2bash: A corpus and semantic parser for
natural language interface to the linux operating system, in: Proceedings of the Eleventh
International Conference on Language Resources and Evaluation (LREC 2018), 2018.

[26] T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi, P. Cistac, T. Rault, R. Louf,
M. Funtowicz, et al., Transformers: State-of-the-art natural language processing, in:
Proceedings of the 2020 conference on empirical methods in natural language processing:
system demonstrations, 2020, pp. 38–45.

[27] S.-B. Cocea, Bert embeddings: A modern machine-learning approach for detect-
ing malware from command lines (part 1 of 2), https://www.crowdstrike.com/blog/
bert-embeddings-new-approach-for-command-line-anomaly-detection/, 2022. Accessed:
2022-06-01.

[28] C. Popa, Bert embeddings: A modern machine-learning approach for detecting
malware from command lines (part 2 of 2), https://www.crowdstrike.com/blog/
bert-embeddings-new-approach-for-command-line-anomaly-detection-part-2/, 2022. Ac-
cessed: 2022-06-01.

[29] Y. Zhao, Z. Nasrullah, Z. Li, Pyod: A python toolbox for scalable outlier detection, arXiv
preprint arXiv:1901.01588 (2019).

[30] C. C. Aggarwal, Outlier Analysis, 2nd ed., Springer Publishing Company, Incorporated,
2016.

[31] M.-L. Shyu, S.-C. Chen, K. Sarinnapakorn, L. Chang, A novel anomaly detection scheme
based on principal component classifier, in: Proceedings of the IEEE foundations and new
directions of data mining workshop, IEEE Press, 2003, pp. 172–179.

[32] F. T. Liu, K. M. Ting, Z.-H. Zhou, Isolation forest, in: 2008 eighth ieee international

https://www.crowdstrike.com/blog/bert-embeddings-new-approach-for-command-line-anomaly-detection/
https://www.crowdstrike.com/blog/bert-embeddings-new-approach-for-command-line-anomaly-detection/
https://www.crowdstrike.com/blog/bert-embeddings-new-approach-for-command-line-anomaly-detection-part-2/
https://www.crowdstrike.com/blog/bert-embeddings-new-approach-for-command-line-anomaly-detection-part-2/

conference on data mining, IEEE, 2008, pp. 413–422.
[33] F. T. Liu, K. M. Ting, Z.-H. Zhou, Isolation-based anomaly detection, ACM Transactions

on Knowledge Discovery from Data (TKDD) 6 (2012) 1–39.
[34] Z. Li, Y. Zhao, N. Botta, C. Ionescu, X. Hu, Copod: copula-based outlier detection, in: 2020

IEEE international conference on data mining (ICDM), IEEE, 2020, pp. 1118–1123.
[35] L. Tunstall, N. Reimers, U. E. S. Jo, L. Bates, D. Korat, M. Wasserblat, O. Pereg, Efficient

few-shot learning without prompts, arXiv preprint arXiv:2209.11055 (2022).
[36] P. Salunkhe, Linux commands & utilities commonly used by attackers, https://www.uptycs.

com/blog/linux-commands-and-utilities-commonly-used-by-attackers, 2021. Accessed:
2022-10-01.

[37] T. M. Corporation, Mitre att&ck® enterprise techniques„ https://attack.mitre.org/
techniques/enterprise, 2023. Accessed: 2023-03-01.

[38] R. Canary®, Atomic red team™, https://github.com/redcanaryco/atomic-red-team, 2023.
Accessed: 2023-03-01.

https://www.uptycs.com/blog/linux-commands-and-utilities-commonly-used-by-attackers
https://www.uptycs.com/blog/linux-commands-and-utilities-commonly-used-by-attackers
https://attack.mitre.org/techniques/enterprise
https://attack.mitre.org/techniques/enterprise
https://github.com/redcanaryco/atomic-red-team

	1 Introduction
	2 Related Work
	2.1 Log Anomaly Detection
	2.2 Masquerade Detection

	3 Data
	3.1 Data Description
	3.2 Data Preprocessing

	4 Methodology
	4.1 Unsupervised Approach
	4.2 Supervised Approach

	5 Experimental Results
	5.1 Unsupervised Approach Results
	5.2 Supervised Approach Results
	5.3 Session Annotations and Examples

	6 Conclusions

