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Abstract 
The current trend for vehicles to be significantly correlated with vehicles, unspecified devices, and 
organization upsurges the latent for exterior attacks on vehicle's cyber-security. The main network 
security function is intrusion detection with open connectivity, like connected cars and self-driving. 
Particularly, when a vehicle is associated with an exterior device over a device in the vehicle or when 
it connects with an exterior structure, cybersecurity is mandatory to defend the network of software 
inside the vehicle. Present technique with this concern comprises intrusion detection and a vehicle 
gateway system. Conversely, it is challenging to block mischievous code based on behaviors of 
application. This study presents an Enhancing Android Malware Detection using Self-Attention 
Transformer Model (EAMD-SATM) model in Internet of Vehicles. The projected EAMD-SATM model 
categorizes and recognizes the Android malware efficiently and accurately. To attain this, the EAMD-
SATM approach endures a min-max approach utilizing data pre-processing at the initial stage. 
Furthermore, the EAMD-SATM method employs self-attention-based transformer (SA-T) technique 
for the detection of Android malware. To improve the SA-T technique solution, the EAMD-SATM 
technique applies the improved mother optimization (IMO) technique for the parameter tuning 
process. The simulation validation of the EAMD-SATM algorithm can be established on a benchmark 
Android malware dataset. The experimental outcomes highlighted the important performance of the 
EAMD-SATM approach in the Android malware recognition method. 
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1. Introduction 

In recent times Autonomous Vehicular System (AVS) should have spotted a huge development 
in a varied range of characteristics through the improvement of smart cities to construct 
Intelligent Transport System (ITS) [1]. Including, the vivid usage of embedded schemes and 
wireless communication viz., 5 G and 4 G LTE in recent vehicle internet that finally increases 
users’ well-being and security [2]. Still, developing curiosity during the expansion of Connected 
Autonomous Vehicle (CAV and ITS has presented unique security  
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tasks and susceptibilities in AVSs, which had a major influence on the smart surroundings for 
smart cities [3]. On the other hand, traditional computer security results aren't valid in 
automated industrialized criteria for vehicle-to-vehicle (V2V) communication, vehicle-to-
everything (V2X) communication, and in-vehicle communications mostly due to the real-time 
presentation requests, controlled computing resources, and dissimilarities between 
heterogeneous networks and their installations [4]. Malware detection is the main task in ITSs 
for several different applications and IoT devices are applied. Such as, self-driving vehicles are 
more susceptible to hacking these are linked to the Internet and may obtain diverse commands 
from mobile applications. Nevertheless, ancient cars don’t have this innovative feature [5]. 

Those hacks are life-threatening for travelers in the vehicle, some other persons in another 
vehicle, and also, pedestrians. In real-time it is a tedious task to find out illegal activity [6]. 
Though, several machine learning (ML) and deep learning (DL) methods have been applied to 
detect this behavior. In addition, it presently provides “full self-driving” to proprietors of 
personal vehicles and offers “self-driving mode” in its vehicles [7]. Therefore, this incident is a 
notable landmark in AV improvement. Furthermore, as there a plentiful high-quality data sets 
presented and there a similar severe performance necessities, the academic community helps 
DL methods for ML-related responsibilities in Avs [8]. Meanwhile, Hinton released a unique 
deep-structured learning architecture, a deep belief network (DBN), and important 
developments were completed in DL. Present AVs trust intensely DL techniques for example 
image classification (IC), semantic segmentation (SS), and object detection (OD) for its execution 
[9]. Traffic sign recognition (TSR) is a vital DL application in AVs. It utilizes the DL model to 
classify the traffic sign image that is attained by the sensor camera after that employs the 
intelligent control system for controlling the car under the classification outcomes [10]. 

This study designs an Enhancing Android Malware Detection utilizing the Self-Attention 
Transformer Model (EAMD-SATM) model in Internet of Vehicles. The projected EAMD-SATM 
model categorizes and recognizes the Android malware efficiently and accurately. To attain 
this, the EAMD-SATM approach endures a min-max approach utilizing data pre-processing at 
the initial stage. Furthermore, the EAMD-SATM method employs self-attention-based 
transformer (SA-T) technique for the detection of Android malware. To improve the solution of 
the SA-T technique, the EAMD-SATM method applies the improved mother optimization (IMO) 
technique for the hyperparameter tuning method. The simulation validation of the EAMD-
SATM approach can be established on a benchmark Android malware dataset. 

2. The Literature Review 

Ferrag et al. [11] propose SecurityBERT, a new structure, which leverages the Bi-directional 
Encoder Representation from Transformers (BERT) method. This method integrated a new 
privacy-preserving encoding method named Privacy Preserving Fixed Length Encoding 
(PPFLE). The technique effectually represents the network traffic data in a structural format by 
uniting PPFLE with the Byte level Byte Pair Encoder (BBPE) Tokenizers.  In [12], the author 
examines the innovative ML method applications, particularly in Bi-directional LSTM (BiLSTM) 
and LSTM structures, enhanced by the word embedding methods. The study begins with a 
systematic study of stringent data processing methods and basic ML principles, creating a 
robust basis for sequential stages. The research initiates the refinement and formation of a 
specific DL method that is elaborately intended for the precise recognition of hidden malware 



in execution files. Islam et al. [13] present accurate, practical, and robust systems to recognize 
medical plants from smartphone seized plant imageries in the plant sites. The presented method 
used a cascade structure to mine the features by utilizing a pre-trained ResNet50 method that 
is enhanced by utilizing a Particle Swarm Optimizer (PSO) to identify the plants. 

Ullah et al. [14] introduce a new network IDS for VANET that levers Spark-based big data 
optimizer and transfer learning (NIDS-VSB). At initial, a packet parser is utilized to crawl the 
filter required flow event and network traffic. Then, a Spark-based optimizer technique is 
executed to process the huge quantities of data effectively. Additionally, a transfer learning 
method is created to study extensive feature representation by utilizing their semantic anchor. 
Then, a stack generality ensemble method utilizes deep feature to identify many assaults. Liu et 
al. [15] propose MalIRL to design a model-free inverse reinforcement learning (IRL) method. 
Especially, MalIRL examines 6 representative group activities of malware and uses sliding 
windows to essentially separate the large malware implementation event streams into many 
attacks’ phases, attaining a lower state and action spaces. To perfect dynamic malicious 
atmospheres, MalIRL presents a prompt dynamic heterogeneous graph represented by learning 
methods. 

3. The Proposed Model 

This study proposes an EAMD-SATM model. The presented EAMD-SATM model categorizes 
and recognizes the Android malware efficiently and accurately. To attain this, the EAMD-SATM 
approach comprises min-max-based data preprocessing, SA-T-based Android malware 
detection, and IMO-based hyperparameter tuning processes. Fig. 1 illustrates the workflow of 
the EAMD-SATM model.  

 

Figure 1: Workflow of EAMD-SATM model 



3.1. Data Preprocessing 

The presented EAMD-SATM method utilizes the min-max approach for the data pre-processing 
process [16]. The min-max normalization is influential in data pre-processing for Android 
malware recognition, certifying that values of a feature are adapted to a constant range among 
0 and 1. By converting data in this method, min-max normalization allows for impartial 
comparison and effectual training of machine learning (ML) methods, allowing precise 
classification of malicious behaviors and patterns within Android applications. This 
standardized method improves the abilities of detection, making the network more robust 
against developing malware attacks in the IoV context. 

3.2. Classification Process 

The SA-T technique is employed for the classification process of the proposed model [17]. These 
methods are signified by an input feature sequence that is employed to encrypt every case in 
the database. In this research paper, we contain 𝑋 = [𝑥!, 𝑥", … , 𝑥#], signify the sequence of 
input features, whereas 𝑛 represents the length of sequence. The self‐attention method 
identifies the relationship among numerous features in the series and provides a weight 
depending on how significant it is for other attributes. To take numerous kinds of relations and 
enhance the efficiency of the model, numerous equivalent layers of self-attention are employed. 
The outputs are served into feed‐forward neural networks for recognizing the non‐linear 
relations and deliver last forecasts, This attention‐based method structure with multi‐head 
attention and self‐attention methods effectively attains dependencies and connections within 
the series of inputs. Fig. 2 represents the structure of the transformer method. 



 

Figure 2: Structure of Transformer model 

In the self‐attention-based transformer method, location encoding and input embedding are 
dual vital methods. The series of inputs is signified by utilizing these phases, which is suitable 
for the following self‐attention layer. The numerical features and definite variables of every 
case are decoded to constant vector representation over input embeddings. While, 𝑒(𝑥$) 
signifies the embedding of the case (𝑥$) and 𝑓(𝑥$) epitomizes the measured mathematical 
features of (𝑥$). The concatenated input embedding (𝑥$) is calculated as: 𝑥$% = [𝑒(𝑥$), 𝑓(𝑥$)]. 
The method understands the series of instances by utilizing location encoded that inserts 
position data to the sequence of input. The self‐attention‐based transformer method effectively 
handles the series of inputs, gathering both positional information and feature representation 
by implementing location encoding and input embedding phases. 

Transformer Encoder: A sequence of embedded features and positional encoding. To detect 
relationships and obtain significant representation from the series of inputs, use a load of the 
Transformer encoder layer. It is calculated as, 𝐸(𝑖) = [𝑒!(𝑖), 𝑒"(𝑖), … , 𝑒#(𝑖)], whereas every 
𝑒(𝑖) signifies the representation of output for the equivalent location in the series.  



Self‐Attention: The Transformer method's ability to discover links among features, which 
go away from adjacency of sequence is a new stimulating characteristic of this method. The 
self‐attention method was employed to acquire the relationship amid numerous points in every 
Transformer Encoder layer. The resemblance amongst the vectors of key and query is employed 
to define the attention weight (AW) for every point. The AW demonstrates the relative 
significance of every location. The AW computation is given below: 

𝐴𝑊 = 𝑠𝑜𝑓𝑡 − max	 9
𝑄&'𝐾(
√𝑑𝑘

?																																																(1) 

Here, 𝐾( and 𝑄𝒰 denotes the key and query related to input embedding (𝑒!, 𝑒", … , 𝑒$). By 
employing the attention weight matrix AW, we build a weighted sum of the value vector as the 
later value vector:  

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛	(𝐴𝑊, 𝑉*) = 𝐴𝑊 ⋅ 𝑉																																															(2) 
Here, 𝑉* signifies the input embedding. Moreover, we tackle the problem of the variable 

length by using the similar padding mask model as the Transformer. Over the embedding layer 
usage, we hold the core of every feature in the assumed input series 𝑥. 

𝐸+$ = 𝑉+$ ⋅ 𝑥																																																																		(3) 
The visited embedding 𝐸+$ and learning parameters 𝑉+$ are intricate in the procedure. This 

layer acts as the drive for incorporating and preserving sequential data into the method.  
Follow the self‐attention tactic to improve the representation via using feed‐forward neural 

networks to every point distinctly. An activation function of non‐linear splits the dual linear 
layers, which compose the feed‐forward networks. Attach the input features to the output of 
the self‐attention device and the feed‐forward network output to generate the remaining 
connections. After that, the features of every sub-layer are regularized utilizing the layer 
normalization process.  

The Transformer Decoder layer output feeds over a fully connected (FC) layer. To define the 
likelihoods of the last output, utilize the activation function of softmax. 

𝑦 = 𝑠𝑜𝑓𝑡	max	(𝑉* + 𝑒)																																																						(4) 

3.3. Hyperparameter Tuning Process 

The MOA approach is employed for the hyperparameter tuning process EAMD-SATM 
approach [18]. The MOA model is a metaheuristic technique simulated by the population; it 
addresses the optimization problems through the iteration process. The MOA includes 
candidate solutions in the problem space. The population is initialized based on Eq. (6) at the 
initial stage of the optimization process and modelled using a matrix in Eq. (5). The values of 
decision variable can be described by all the members based on the search space location. 
Additionally, the search ability of population to discover an optimal solution. 
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𝑥,,$ = 𝑙𝑏$ + 𝑟𝑎𝑛𝑑(0,1) × (𝑢𝑏$ − 𝑙𝑏$), 𝑗 = 1,2, … . , 𝑁, 𝑖 = 1,2, … . , 𝑑										(6) 
Now, 𝑋 denotes the population matrix, 𝑁 is the number of population participants, 𝑑 is the 
quantity of decision parameters, 𝑋, = 𝑥,,!, … . , 𝑥,,$ , … . , 𝑥,,/ denotes the 𝑗12 solution of a 



candidate, the 𝑥,,$ is the 𝑖12 a variable that the random function within [0,1], and 𝑢𝑏$ and 𝑙𝑏$ 
are upper and lower limitations of the decision 𝑖12 parameters. 

The members of the population provide solutions to these problems, which is enhanced. The 
function of cost is described by the population individual for the decision variable. 

𝑉 =

⎣
⎢
⎢
⎢
⎡
𝑉!
⋮
𝐹,
⋮
𝐹-⎦
⎥
⎥
⎥
⎤

-×!

=

⎣
⎢
⎢
⎢
⎡
𝑉(𝑋!)
⋮

𝐹\𝑋,]
⋮

𝐹(𝑋-)⎦
⎥
⎥
⎥
⎤

-×!

																																												(7) 

Now, 𝑉 and 𝑉, are the vector cost function value for the 𝑗12 individuals. 
The value of cost function evaluates the solution quality generated by the population 

members. In every iteration, the individual locations and best individual of the population are 
upgraded. Therefore, the best individual in population resolves the problems in the last 
iteration. 

Consider the mathematical modeling of raising children by mother through interaction. In 
the MOA, the population can be upgraded in three different stages as follows:  

Education or exploration stage: This stage is based on the children's education in the 
proposed MOA. The objective is to increase the global search and exploration capabilities by 
making huge alterations in the distinct position. Since the behavior of mother's during the 
children's training is noble, and considered as fittest member. A new location for every 
individual is generated by using Eq. (9). If the values of the benchmark function increase in the 
updated position, then it is demonstrated as a corresponding member place as follows 

𝑥,,$3! = 𝑥,,$ + 𝑟𝑎𝑛𝑑(0,1) × (𝐷$ − 	𝑟𝑎𝑛𝑑	(2) 	× 𝑥,,$)																												(8) 

𝑋, = a
𝑥4̇3!, 𝑉,3! ≤ 𝐹, ,
𝑋, , 𝑒𝑙𝑠𝑒,

																																																		(9) 

Where 𝐷$ is the 𝑖12 size of the mother’s position, 𝑥,,$ is the 𝑖12 size of 𝑗12 individual location, 
𝑋, and 𝑋,3! are the updated locations calculated for the 𝑗12 individuals, 𝑥,,$3! shows its 𝑖12 

dimension,	𝐹,3! is the cost function value, and the 𝑟𝑎𝑛𝑑 is a uniformly generated integer within 
[0,1] and [1,2]. 

Advice or Exploration Stage: A mother's responsibility is raising the children, which is of 
great importance to guide their children and not allow them to misbehave. This allows global 
search and exploration by creating huge alterations in the member location. If an individual 
position in the population is exceeded by other individuals with the highest value of cost 
function is assumed as a rare method that must be prohibited. Every individual’s bad behavior 
(𝐵𝐵$) is determined by the comparative review of the cost function value. The members are 
arbitrarily selected from the set of worst behaviors for 𝑋$ , using a uniform distribution. Firstly, 
a new location is generated for each individual using Eq. (10). This keeps the child far from the 
bad behavior. If there is an increase in cost function value, then a new position replaces the 
earlier one based on Eq. (11). 

Exploitation and upbringing stage: Mother uses dissimilar approaches to encourage their 
kids to enhance their abilities in the learning method. On the other hand, upbringing assists 
individuals to recover their capability in exploitation and local search by making small changes 
in individual locations. To stimulate this, a new location is generated for every individual based 



on the behavior development of children. If the cost function value improves, it replaces the 
preceding location, as follows: 

𝑥4̇,$36 = 𝑥,,$ + \1 − 2 × 𝑟𝑎𝑛𝑑(0,1)] ×
𝑢𝑏$ − 𝑙𝑏$

𝑡
																										(10) 

𝑋, a
𝑋,36, 𝑉4̇36 ≤ 𝑉$;
𝑋, , 𝑒𝑙𝑠𝑒,

																																																	(11) 

Where 𝑋,36 denotes the updated location, which is evaluated for the 𝑗12 individuals, 𝑥,,$36 is its 

𝑖12 dimension, 𝑉,36 denotes the cost function value, the 𝑟𝑎𝑛𝑑 is a randomly generated integer 
within [0,1]; 𝑡 denotes, the iteration counter. 

The fitness range is the extensive aspect influencing the achievement of the MOA method. 
The hyperparameter assortment method includes the solution-encoded method to compute the 
value of the candidate solution. In this research work, the MOA esteems accuracy as the main 
feature for inventing the fitness function that is expressed below.  

𝐹𝑖𝑡𝑛𝑒𝑠𝑠	 = 	max	(𝑃)																																															(12) 

𝑃 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
																																																				(13) 

Whereas, 𝑇𝑃	and 𝐹𝑃 portray the true and false positive values. 

4. Experimental Validation 

The performance assessment of the EAMD-SATM approach is analyzed using the Andro-
AutoPsy database [19, 20]. This database has 7500 samples with 2 class labels as specified in 
Table 1. 

Table 1 s 
Details on Dataset 

Classes No. of instances 

Benign 5000 

Malware 2500 

Total instances 7500 

 
Table 2, reports an android malware detection result of EAMD-SATM technique under 

70%TRAP and 30%TESP. In Fig. 3, the average outcomes presented by the EAMD-SATM 
approach on 70% of TRAS is emphasized. This figure displayed that the EAMD-SATM system 
attains efficient results. With 70%TRAP, the EAMD-SATM approach achieves average 𝑎𝑐𝑐𝑢7 of 
97.30%, 𝑝𝑟𝑒𝑐# of 97.60%, 𝑟𝑒𝑐𝑎8 of 96.33%, 𝐹9(*:&;( of 96.93%, and 𝑀𝐶𝐶 of 93.93%.  

In Fig. 4, the average outcomes provided by the EAMD-SATM technique on 30% of TESP are 
underlined. The figure portrayed that the EAMD-SATM system obtains proficient results. With 
30%TESP, the EAMD-SATM methodology achieves average 𝑎𝑐𝑐𝑢7 of 97.69%, 𝑝𝑟𝑒𝑐# of 97.82%, 
𝑟𝑒𝑐𝑎8 of 96.93%, 𝐹9(*:&;( of 97.36%, and 𝑀𝐶𝐶 of 94.75%.  



Table 2 
Android malware detection outcome of EAMD-SATM technique under 70%TRAP and 30%TESP 

Classes  𝑨𝒄𝒄𝒖𝒚 𝑷𝒓𝒆𝒄𝒏 𝑹𝒆𝒄𝒂𝒍 𝑭𝒎𝒆𝒂𝒔𝒖𝒓𝒆 MCC 

TRAP (70%) 

Benign 97.30 96.76 99.25 97.99 93.93 

Malware 97.30 98.44 93.41 95.86 93.93 

Average 97.30 97.60 96.33 96.93 93.93 

TESP (30%) 

Benign 97.69 97.46 99.14 98.29 94.75 

Malware 97.69 98.18 94.72 96.42 94.75 

Average 97.69 97.82 96.93 97.36 94.75 

  

 

Figure 3: Average outcome of EAMD-SATM technique under 70% TRAP 



  
Figure 4: Average outcome of EAMD-SATM technique under 30% TESP 

 

Figure 5: EAMD-SATM technique Curves of (a) Accuracy (b) Loss (c) PR and (d) ROC 

Fig. 5 illustrates the classifier outcomes of EAMD-SATM approach. Fig. 5a shows the 
accuracy study of the EAMD-SATM approach. This figure shows that the EAMD-SATM method 
achieves growing values over increased epoch counts. Then, Fig. 5b demonstrates the loss study 
of the EAMD-SATM technique. The outcomes specify that the EAMD-SATM methodology 
achieves adjacent outcomes of training and validation loss. Fig. 5c reported the study of PR in 
the EAMD-SATM system. The outcomes indicated that the EAMD-SATM method outcomes in 
growing PR values. At last, Fig. 5d shows the ROC examination of the EAMD-SATM technique. 
The figure represented, that the EAMD-SATM approach results in enhanced values of ROC. 



Table 3 
Comparative analysis of EAMD-SATM technique with other models  

Algorithm 𝑨𝒄𝒄𝒖𝒚 𝑷𝒓𝒆𝒄𝒏 𝑹𝒆𝒄𝒂𝒍 𝑭𝒎𝒆𝒂𝒔𝒖𝒓𝒆 

EAMD-SATM 97.69 97.82 96.93 97.36 

J48 Model 96.80 95.20 95.42 97.24 

Decision Table 94.60 91.60 95.52 97.07 

Naive Bayes 69.10 61.00 96.02 96.71 

SMO Classifier 96.40 94.60 95.07 96.26 

Logistic Algorithm 96.30 94.40 95.74 96.58 

AdaBoostM1 88.40 81.70 91.83 94.25 

 

 

Figure 6: Comparative analysis of EAMD-SATM technique with other models 

In Table 3 and Fig. 6, the efficient results of the EAMD-SATM technique were experienced 
compared with recent techniques [21-23]. The outcomes indicated, that the Naive Bayes & 
AdaBoostM1 method displayed inferior outcomes. Together, the J48, Decision Table, SMO, and 
Logistic Algorithm approaches have depicted nearer results. However, the EAMD-SATM model 
handled reporting the highest outcomes with higher 𝑎𝑐𝑐𝑢7, 𝑝𝑟𝑒𝑐#, 𝑟𝑒𝑐𝑎8 , and 𝐹9(*:&;( of 
97.69%, 97.82%, 96.93%, and 97.36%, appropriately.  



5. Conclusion 

This study proposes an EAMD-SATM model has been developed. The presented EAMD-SATM 
model classifies and recognizes the Android malware efficiently and accurately. To attain this, 
the EAMD-SATM approach endures a min-max approach utilizing data pre-processing at the 
initial stage. Furthermore, the EAMD-SATM method employs SA-T technique for the detection 
of Android malware. To improve the solution of the SA-T technique, the EAMD-SATM 
algorithm applies the IMO technique for the parameter tuning method. The simulation 
validation of the EAMD-SATM technique can be established on a benchmark Android malware 
dataset. The experimental results highlighted the important performance of the EAMD-SATM 
approach in the Android malware recognition method 
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