
An efficient necessary condition for compatibility

Olivia Oanea∗ and Karsten Wolf

Universität Rostock, Institut für Informatik
18051 Rostock Germany

{olivia.oanea,karsten.wolf}@uni-rostock.de

Abstract. Composing services makes sense only if they are compatible,
i.e. composition does not lead to problems such as livelocks or deadlocks.
In general, compatibility can be checked using state space explorations
on any kind of formal models of services.
Petri nets, one of the formal models in use, offer a rich theory for reasoning
without exploring a state space. Among the techniques is the so-called
state equation which forms a linear algebraic necessary condition for
reachability of states.
In this article, we show how the state equation can be applied for a
necessary condition for compatibility. This way, the number of expensive
state space based compatibility checks can be drastically reduced. The
condition can be applied even if compatibility is achieved through the
construction of a behavioral adapter (mediator).

1 Introduction

Service behaviors are compatible if their composition forms a closed system
(every outbound channel of a service is merged to an inbound channel of some
other service) and all involved services can execute their control flow completely.
Compatibility can be augmented with the requirement that all or certain activities
in the participating services can occur or other semantical constraints.

In this paper we show an approach for alleviating the costs of the compatibility
check for services modeled with Petri nets using their state equation. The state
equation provides a necessary condition for reachability of the final states of the
services in the composition under several constraints such as the enabling of
some events or choice covering. This result can be applied directly to adapter
synthesis [1]. Service adaptation (mediation) is a semi-automatic approach of
correcting incompatibilities between services in which transformation rules are
provided normally by hand to correct the message flow. The state equation
provides a necessary condition for the existence of such an adapter that uses the
specified rules.

In the remainder of this article, we first introduce notations for Petri net
models for services and the state equation. Section 3 gives the necessary condi-
tions for compatibility and derives other necessary conditions for compatibility
under some additional constraints. Section 4 presents a necessary condition to
adaptability. Section 5 concludes the paper.
∗ Supported by German Research Foundation (DFG) under grant WO 1466/11-1

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

a

b

c

a

b

c

d

d

e

a

b

c

d

e

N N ′ N ′′

e

t1

p

t2

t3

t4

t5p′

Fig. 1: An open net N and its partner open nets N ′ and N ′′

2 Petri nets as models of services and the state equation

Let Σ = {a, b, c, . . . } be a finite message type set, ?Σ = {?a, ?b, ?c . . . } a finite
set of receive events, and !Σ = {!a, !b, !c . . . } a finite set of send events. We also
write ?Σ =!Σ and ?Σ =?Σ.

We consider services modeled as open nets. An open net [2] is a Petri net [3]
with a special set of interface places which represent the communication channels
with other nets.

Definition 1. An open net is a tuple N = (P ∪ Pi ∪ Po, T, F,m0,Mf , l), where

– P, Pi, Po are the pairwise disjunct finite sets of internal/input/output places;
– T is the finite set of transitions so that (P ∪ Pi ∪ Po) ∩ T = ∅ which are

labeled by the partial function l : T →?Σ∪!Σ;
– F : ((P ∪Pi∪Po)×T)∪ (T × (P ∪Pi∪Po))→ N represents the flow function

so that F (p, t) = F (t′, p′) = 0, for all (p, t) ∈ Po × T and (t′, p′) ∈ T × Pi;
– m0,Mf represent the initial state (marking) and the finite set of final states,

respectively. We consider states as vectors over the set of places.

An open net is called closed when its interface is empty, i.e. Pi ∪ Po = ∅. The
projection of an open net on its transitions and internal places is a closed net
denoted by ÒN . Open nets over ?Σ∪!Σ are composed [2] by merging their interface
places (i.e. an input and with an output place denoting the same message channel)
and is denoted by ⊕, with the corresponding initial and final markings. Figure 1
shows three open nets N,N ′, N ′′, each with the final marking with a token on
its double circled place.

A transition t ∈ T is enabled in a marking m if F (p, t) ≤ m(p) for all places
p. An enabled transition may fire yielding a (reachable) marking m′ so that

m′(p) = m(p)− F (p, t) + F (t, p) for all places p, which is denoted by m t−→ m′.
The reachability relation can be extended to sequences of transitions σ ∈ T ∗,
which is denoted by σ−→. Two open nets are called compatible if their composition
weakly terminates, i.e. from each state reachable from the initial state of the
composition, it is possible to reach a final state of the composition. A weaker
notion of compatibility is deadlock-freedom, i.e. at each non-final reachable state
(in the composition) it is possible to fire a transition.

Reachability analysis for Petri nets can be achieved by using typical structural
methods, e.g. methods which find algebraic approximations of the state space
with finite representation. The state equation [4] relates the behavior of a net
(given by states and firing sequences) and its structure (incidence matrix) and
can be solved using standard linear programming [5].

The incidence matrix CN ∈ N(P∪Pi∪Po)×T is defined by CN (p, t) = F (t, p)−
F (p, t) for all (p, t) ∈ (P ∪ Pi ∪ Po)× T . Let σ ∈ T ∗ be transition sequence. The
Parikh vector of σ is a vector σ̄ ∈ NT which assigns to each transition t ∈ T
its number of occurrences in σ. Let σ̄(a) =

P
t∈T :l(t)=a σ̄(a) denote the number

of occurrences of all transitions labeled by a ∈!Σ∪?Σ. Given a firing sequence
m

σ−→ m′ of N , the firing equations for all places of N and all transitions in σ
can be written in matrix form m′ = m+C · σ̄, which is called the state equation.

Proposition 1 (Necessary condition for reachability). For every finite
firing sequence m σ−→ m′ of N , the state equation m′ = m+ CN · σ̄ holds.

3 Necessary condition for compatibility

We state now a necessary condition for compatibility as weak termination of two
composed open nets. The first conditions represent the state equations of the
open nets without their interface places. The last condition means that in all
solutions to the equation the number of occurrences of receiving events should
be equal to the number of occurrences for sending events for each such event.

Corollary 1. If N and N ′ are compatible (w.r.t. weak termination), then the
system LP(CbN , CbN ′ ,m0,m

′
0,mf ,m

′
f , x, x

′) is feasible.

LP(CbN , CbN ′ ,m0,m
′
0,mf ,m

′
f , x, x

′) :
mf = m0 + CbN · x x ∈ NT

m′f = m′0 + CbN ′ · x′ x′ ∈ NT ′

x(a) = x′(ā) ∀a ∈?Σ∪!Σ

If the equation does not have any solution then the final marking will not be
reachable in the composition from the initial marking.

Remark 1. In case services have more final states, separate systems of equations
are solved for each possible combination. For the nets N and N ′ in Figure 1
LP(CbN , CbN ′ ,m0,m

′
0,mf ,m

′
f , x, x

′) does not have any solution. Therefore, N
and N ′ are incompatible. Note that the converse does not hold, e.g. the nets
N and N ′′ in Figure 1, x′′(?a) = x(!a) = 2, x(?b) = x′′(!b) = 1, x(!d) =
x′′(?d) = 1, x(!c) = x′′(?c) = 0 and x(!e) = x′′(?e) = 0 is a solution for
LP(CbN , CbN ′′ ,m0,m

′′
0 ,mf ,m

′′
f , x, x

′′), however N and N ′′ are incompatible as we
shall see in the remainder.

If N ⊕N ′ is deadlock-free then at each non-final reachable marking in the
composition there is an enabled transition, i.e. adding the disabling condition for
each transition leads to an infeasible system.

Corollary 2 (deadlock-freedom). If N⊕N ′ is deadlock-free then the following
system of inequations has no solution:

m = m0 + CbN · x x ∈ NT ,m ∈ NP

m′ = m′0 + CbN ′ · x′ x′ ∈ NT ′m′ ∈ NP ′

x(a) = x′(ā) +m′′(pa) ∀a ∈?Σ∪!Σ
m <> mf ∧m′ <> m′f ∧ m′′ <> 0Pi∪Po m′′ ∈ NPi∪PoW

p:FN⊕N′ (p,t)>0((m+m′ +m′′)(p) < FN⊕N ′(p, t)) ∀t ∈ T ∪ T ′

3.1 Necessary conditions for compatibility under constraints

Several variations for compatibility notions have been introduced [6–8] which
define behavioral constraints which can imposed on interacting services. Among
these settings we mention transition cover and place cover.

Message and event cover

Definition 2. We call an action a in ?Σ∪!Σ covered locally/globally iff a tran-
sition/all transitions labeled by a in the composition eventually becomes enabled
in the composition. A message place (channel) p ∈ Pi ∪ Po is called covered if
m(p) > 0, for some reachable marking m in the composition.

Let N and N ′ be two open nets and a ∈?Σ∪!Σ. We state now conditions
which should be added to LP(CbN , CbN ′ ,m0,m

′
0,mf ,m

′
f , x, x

′) to enforce local,
global event cover, place and message cover.

local event cover x(t) > 0 (t ∈ T : l(t) = a) or x′(t′) > 0 (t′ ∪ T ′ : l(t) = a);
place cover for p ∈ P there exists a t ∈ T so that F (p, t) > 0 and x(t) > 0

(similarly if p ∈ P ′);
global event cover x(t) > 0, for all t ∈ T : l(t) = a or x′(a) > 0;
message channel cover x(a) > 0 and x′(ā) > 0.

In N⊕N ′′ in Figure 1, a is locally covered but not globally covered (transition
t1). The message channel e is covered neither in N ⊕N ′ nor in N ⊕N ′′.

Free-choice sending cover Here, we want to strengthen the previously stated
condition by taking into account that compatibility does not refer to a single
execution (as the state equation would suggest). If an execution passes an
internal decision of one service then its partner needs to be able to react to all
possible outcomes for this decision. With the following consideration, we want to
incorporate this observation into our condition at least for so-called free-choice
decisions [3].

Let x ∈ P ∪ T . The conflict cluster ν(x) of x is the smallest set satisfying
(1) : x ∈ ν(x), (2) : ∀q ∈ T : •q ∩ ν(x) 6= ∅ =⇒ q ∈ ν(x) and (3) : ∀q ∈
P : q• ∩ ν(x) 6= ∅ =⇒ q ∈ ν(x). We write ν when x is clear from the context.
A conflict cluster ν(x) so that |ν(x)| > 2 is called a sending free-choice conflict
cluster (SC) iff for all t1, t2 ∈ ν ∩ T , •t1 ∩ •t2 6= ∅ implies •t1 = •t2 and l(t) ∈!Σ
for all t ∈ T ∩ ν. In Figure 1 {p, t1, t2} represents such a SC in N . Note that a
SC in ÒN is also a SC in N .

A SC in the composition of two nets N and N ′ is called covered if each
transition of the SC is in some firing sequence from the initial marking to the
final marking of the composition. For compatible partners, every reachable SC
in a service should be resolved by the partner.

Corollary 3. Let ν be a SC with ν ∩ T = {t1, t2} in N . If N and N ′ are
compatible and ν is covered in N ⊕N ′, then CLP(CbN , CbN ′ , ν) is feasible.

CLP(CbN , CbN ′ , ν) :

LP(CbN , CbN ′ ,m0,m
′
0,mf ,m

′
f , x, x

′)
LP(CbN , CbN ′ ,m0,m

′
0,mf ,m

′
f , x̄, x̄

′)
x(t1) > 0 ∧ x′(t2) > 0
{ν′ SC in ÒN ′|ν′ ∩ T ′ = {t′1, t′2} ∧ x̄(t′1) > 0 ∧ x̄′(t′2) > 0∧

∧l′(t′1) = l(t1) ∧ l′(t′2) = l(t2)}

The last condition checks for the existence of a conflict cluster ν′ receiving
the messages sent by ν. The open nets N and N ′′ in Figure 1 are incompatible
as CLP(CbN , CbN ′ , ν) has no solutions (the choice between the transitions labeled
by !a and !d in N ′′ is not covered) even if LP(CbN , CbN ′′ ,m0,m

′′
0 ,mf ,m

′′
f , x, x

′′)
has solutions.

Remark 2 (deadlock-freedom under constraints cover). We can relax the deadlock-
freedom condition in Corollary 2 to express a necessary condition for local event
(transition) cover and SC cover:

t cover
W
p:FN⊕N (p,t)>0(m+m′ +m′′)(p) ≥ FN⊕N ′(p, t), where t ∈ T ∪ T ′;

SC cover
W
p:FN⊕N (p,t)>0(m+m′ +m′′)(p) ≥ FN⊕N ′(p, t) for all t ∈ ν.

Remark 3 (behavioral SC). The transition t4 of N in Figure 1 is dead and
removing it from N does not influence compatibility of N with any other partner.
Hence we can consider “behavioral” SC’s (e.g. {p′, t3, t5}) to be checked for
cover.

4 Necessary condition for adapter synthesis

The open nets N1 and N2 in Figure 2 do not satisfy the necessary condition in
Corollary 1, hence they are incompatible. Adapters are used to solve incompati-
bilities between interacting services. We consider here the approach in [1] with
weak termination as compatibility notion, where adapters are partially specified
by transformation rules on messages called SEA (Specification of Elementary
Actions). A general rule is described by r : x 7→ x′, where x ∈ N!Σ and x′ ∈ N?Σ .

b

c

d

N1

a

b′

b′′

r4: !d 7→

r2: b 7→?b′+?b′′

r1: 7→?a

r3: 7→?c

t1r

t2r

t3r

t4r

N2AE

Fig. 2: Two open nets N1 and N2 and their partial adapter AE

The example in Figure 2 shows typical transformation rules: creation of a message
(e.g. !d 7→), deletion of a message (7→?c), splitting a message into two messages
(!b 7→?b′+?b′′). Each transformation rule is transformed into an open net which
communicates with the initial services and with an entity which controls the
application of these rules (e.g. the transition t1r) and the sending/receiving of
messages (denoted by dashed arrows). The open net obtained from the trans-
formation rules is called partial adapter AE . The adapter synthesis procedure
computes a partner C which controls N1 ⊕ AE ⊕ N2 and the final adapter is
C ⊕AE .

A direct consequence of Corollary 1 is that compatible partners have a solution
to their own state equation. We state this condition for the adapter setting.

Corollary 4. If N1 and N2 are adaptable by the set of transformation rules R,
then the state equation for ̂N1 ⊕AE ⊕N2 with initial marking m1

0 +m2
0 and final

marking m1
f +m2

f holds.

The state equation for ̂N1 ⊕AE ⊕N2, where AE is the partial adapter for the
rules {r1, r3, r4}, does not yield any solution, thus N1 and N2 are not adaptable
by {r1, r3, r4}.

In addition, we can formulate a necessary condition for transformation rule
cover. Let r : σ −→ σ′. We add to the state equation of ̂N1 ⊕A⊕N2 the con-
straint x(tr) > 0, where tr is the transition corresponding to the application of
the rule. Thus, we can eliminate rules which will never be fired in conjunction
with a proper terminating execution. In Figure 2, r3 and r4 are redundant rules.

5 Conclusion

In this paper we stated some necessary conditions for service compatibility using
the state equation for Petri nets. The advantage of using this approach to state

space methods (e.g. [9–11]) is its lower computational complexity [5] (polynomial
for real solutions/exponential in the worst case for integer solutions). An area
of application for this approach is service discovery and service composition [8,
2], i.e. finding well-behaved partners for a particular service in a repository of
services. Service discovery and composition are inherently costly job (both from
time and space) w.r.t. the size of the repository and of the services themselves.
Using such a quick check can ease the task of a broker for discovering/adapting
potentially compatible partners for a service by disposing of those services which
do not satisfy the necessary criterion.

The approach presented in this paper allows for (in)compatibility to be
analyzed in a compositional way (incorrectness of a component can be used to
derive the incorrectness of the composition). This is complementary to structural
methods used in soundness analysis [12, 13] of monolithic workflow. As future
work, we plan to implement the state equation approach as a preliminary check for
service composition and adaptability and evaluate the efficiency of this approach
in the large on a set of case studies provided by industry.

References

1. Gierds, C., Mooij, A.J., Wolf, K.: Specifying and generating behavioral service
adapter based on transformation rules. Technical Report CS-02-08, Universität
Rostock, Rostock, Germany (2008)

2. Wolf, K.: Does my service have partners? LNCS ToPNoC 5460(II) (2009) 152–171
Special Issue on Concurrency in Process-Aware Information Systems.

3. Desel, J., Esparza, J.: Free Choice Petri nets. Volume 40 of Cambridge Tracts in
Theoretical Computer Science. Cambridge University Press (1995)

4. Schmidt, K.: Narrowing Petri net state spaces using the state equation. Fundam.
Inform. 47(3-4) (2001) 325–335

5. Schrijver, A.: Theory of Linear and Integer Programming. Wiley-Interscience series
in discrete mathematics. John Wiley & Sons (1986)

6. Wolf, K.: On synthesizing behavior that is aware of semantical constraints. In:
Proceedings of AWPN 2008. Volume 380 of CEUR Workshop Proceedings., CEUR-
WS.org (2008) 49–54

7. Lohmann, N., Massuthe, P., Wolf, K.: Behavioral constraints for services. In: BPM
2007. Volume 4714 of LNCS. (2007) 271–287

8. Stahl, C., Wolf, K.: Deciding service composition and substitutability using extended
operating guidelines. Data Knowl. Eng. (2008) (Accepted).

9. Fu, X., Bultan, T., Su, J.: Analysis of interacting BPEL web services. In: WWW
’04, ACM (2004) 621–630

10. Schlingloff, B.H., Martens, A., Schmidt, K.: Modeling and model checking web
services. Electr. Notes Theor. Comput. Sci. 126 (2005) 3–26

11. Mateescu, R., Poizat, P., Salaün, G.: Adaptation of service protocols using process
algebra and on-the-fly reduction techniques. In: ICSOC. Volume 5364 of LNCS.
(2008) 84–99

12. K. van Hee, Oanea, O., Sidorova, N., Voorhoeve, M.: Verifying generalized soundness
for workflow nets. In: PSI. Volume 4378 of LNCS., Springer (2007) 235–247

13. Verbeek, H.M.W., van der Aalst, W.M.P.: Woflan 2.0: A Petri-net-based workflow
diagnosis tool. In: ATPN 2000. Volume 1825 of LNCS., Springer (2000) 475–484

