
PelletServer: HTTP & OWL2 Reasoning

Blazej Bulka1 and Evren Sirin1

Clark & Parsia, LLC, Washington, DC, USA
{blazej,evren}@clarkparsia.com

Abstract. Using OWL2 reasoning services with Pellet requires either
interacting with Pellet by using the command line or writing code in
Java to invoke its interfaces. Both of these solutions can be impractical
in some cases. We present a solution for easier, lightweight integration
of Pellet, especially in enterprise environments, by providing access to
reasoning services using a RESTful HTTP interface. We intend that
PelletServer will provide a common interface for different kinds of OWL
reasoning services.

1 Introduction

The Semantic Web attracts significant interest in many application areas and
its popularity is still growing. While for some users the Semantic Web is just a
convenient and flexible knowledge representation paradigm, the actual ability to
define semantics of concepts and reason about them is crucial for a large body
of users in academic, medical, and commercial environments. The publication of
OWL 2 standard reinforces this trend.

Pellet is an OWL 2 reasoner implemented in Java. As such, programming
Pellet is accomplished via a Java API: OWLAPI, Jena,1 or Pellet internal API.
Non-Java applications face a much more difficult task when trying to use Pellet
services. Frequently, the only possible options are either using the command-line
interface or writing code bridging JVM to the environment of another language.
Both of these solutions may involve performance overhead and require significant
integration effort. Nevertheless, the growing popularity of Semantic Web moti-
vates the integration of existing software with reasoning services. This increases
the diversity of various environments where OWL is used, as frequently these
new or existing projects are not Java-based.

A further issue is that OWL-based reasoning often requires significant com-
puting resources — both in terms of processing capabilities and memory — which
may not always be available on every system. Moreover, since reasoning can take
considerable time, it may not always be practical to perform it when a reasoning
service is needed or an application is started (e.g., as it occurs with CLI interface
for reasoners, or desktop applications with embedded reasoners; e.g., Protégé).

These issues can be alleviated by providing reasoning as a web service. Such a
service can run on a powerful, network-based system (or a collection of systems)

1 http://owlapi.sf.net and http://jena.sf.net, respectively

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073



and answer requests from less powerful systems. This approach also amortizes
reasoning costs across many requests. Finally, it may provide easier and more
lightweight integration for applications written in languages other than Java.

In this paper, we present PelletServer, a RESTful [3] interface to Pellet. It
exposes Pellet’s reasoning services via HTTP protocol operations. It not only
allows more efficient use of computing resources, but also allows for easy in-
tegration of non-Java and distributed clients. It paves the way for a common
API for different reasoning services and reasoning systems behind a common,
easy-to-use façade.

2 REST Design Principles

PelletServer is a RESTful web service implemented using JAX-RS API2 and
Apache’s CXF framework.3 Below we explain how REST design principles were
incorporated into the design of PelletServer.

2.1 Resources and Operations

RESTful services focus on the concept of resources whose representations are pro-
vided to clients upon invocation of a generic operation (usually an HTTP opera-
tion). In PelletServer, these resources are (mainly) ontologies. Further, RESTful
services may allow other operations on the resources beyond mere retrieval of
the resource’s representation. In order to perform these additional operations,
clients use other HTTP operations (e.g., PUT, POST, and DELETE). This model
of interaction in REST was primarily designed for manipulating collections of
data, where the primary operations are create, read, update, and delete.

PelletServer’s core use cases are typically of a different kind, that is, not
primarily the basic CRUD operations. Clients do not remove or update the
ontologies remotely, primarily for reasons of administrative and other feasibility.
Instead, they ask questions about an ontology or request some reasoning service
to be performed on that ontology (e.g., explaining a particular inference). Thus,
core HTTP protocol operations are not especially well-suited to the purposes
of OWL reasoning, because most OWL reasoning operations don’t map very
cleanly or intuitively to CRUD operations. At the very least, there is no obvious
one-to-one mapping from HTTP operations to OWL reasoning services.

Since PelletServer’s URLs have not only to identify the resource but also a
reasoning service, there are two possible URLs “design styles”: resource-centric
and service-centric.

For example, the resource-centric URL for retrieving an explanation why a
concept concept is unsatisfiable in the ontology ont1 is /ont1 /explain/unsat/concept .
An analogical service-centric URL is /explain/unsat/ont1 /concept . In short,
the difference in these two styles comes down to whether the URL primarily
identifies an ontology resource or a reasoning service resource.
2 http://jcp.org/en/jsr/detail?id=311
3 http://cxf.apache.org



The difference seems to us to be of a largely aesthetic nature; after all, one
URL style can be automatically converted into the other. There seems to be
consensus in the REST community to prefer the resource-centric design of URLs,
as more closely capturing the ideas of REST. Thus, PelletServer supports both
patterns of URLs to provide users with maximum flexibility.

2.2 Service Discovery

Another important REST design principle is “hypertext as the engine of appli-
cation state” — a principle we take to be far more crucial than URL design
style. The ability of PelletServer clients to dynamically discover the URLs of re-
sources, either ontology or reasoning service, is an important design feature. This
feature differentiates RESTful architectures from remote procedure call (RPC)
architectural style in which the client and server are tightly coupled with respect
to the services they invoke (or provide) and the way these services are invoked
(or provided). Since PelletServer is to be the primary point-of-entry to a variety
of OWL reasoner products and reasoning services, it is crucial that PelletServer
provides loosely coupled service advertisement and, hence, discovery of all rea-
soning services and capabilities provided by a given instance of PelletServer.

In order to support this functionality, PelletServer provides the description
of all resources and services available on the server. That description is available
in both JSON and RDF format (depending on HTTP content negotiation), and
provides information about the URL required to invoke each service, as well
as its parameters (using URI Template syntax), and supported representations
for results. (The server-wide information can be obtained by requesting the root
document on the server.) PelletServer can also provide information about a single
resource (knowledge base), available by using the resource URL.

3 Functionality of PelletServer

We now turn to an overview of the most important capabilities of PelletServer.

Consistency, classification and realization These are the most basic services pro-
vided by PelletServer. They are invoked by de-referencing URLs for an ontology
named ont1 thusly: /ont1 /consistency, /ont1 /classify, and /ont1 /realize.
The first returns boolean, whether a particular ontology is consistent, while
the latter two return the class hierarchy (classification), along with information
about types of individuals in this hierarchy (realization). For classification and
realization, the results can be returned as either a human-readable text format or
an RDF/XML serialization of the class tree or realization hierarchy, respectively.

Query This feature essentially makes PelletServer a SPARQL endpoint that
accepts and executes queries and returns query results. PelletServer accepts both
SPARQL-DL queries, as well as the recently introduced Terp syntax [5].



Explanation PelletServer allows to explain any inference reached by the reasoner.
For example, de-referencing the following URL will generate an explanation for
an unsatisfiable class concept in the ontology: /ont1 /explain/unsat/concept .

4 Related work

The idea of transforming a reasoner into a language-neutral, web-accessible ser-
vice has been proposed a few times. One of the first attempts was DIG [1],
and later OWLLink [4] was introduced as an intended successor of DIG. Both
DIG and OWLLink described a protocol for transmitting and managing ontol-
ogy data, and provided access to reasoning services. However, OWLLink is not
a RESTful service and does not provide a SPARQL-compliant end-point.

Another implementation of reasoner as a service was described by Bock et
al.[2]. They presented a client-server framework that provided a common in-
terface for multiple reasoners. The common reasoner interface was based on
OWLAPI, and the communication between the client and the server was per-
formed over RMI, and therefore was tightly bound to Java.

One of the most important features of PelletServer is the possibility to dis-
cover the services and their capabilities available on a given server instance.
Similar work has been done for SPARQL 1.1 in Service Description API [6],
which allows to describe capabilities of a SPARQL endpoint.

5 Future work

One of our main goals for the future is to provide support for SPARQL update,
and combine it with Pellet Integrity Constraints Validator. We also plan to add
additional reasoning services like clustering and machine learning services.

References

1. S. Bechhofer, R. Moeller, and P. Crowther. The DIG Description Logic Interface.
In Proceedings of DL2003 Workshop, 2003.

2. J. Bock, T. Tserendorj, Y. Xu, J. Wissmann, and S. Grimm. A Reasoning Broker
Framework for OWL. In Proceedings of OWLED, 2009.

3. R. T. Fielding. Architectural Styles and the Design of Network-based Software Ar-
chitectures. PhD thesis, University of California, Irvine, 2000.

4. T. Liebig, M. Luther, and O. Noppens. The OWLLink Protocol. Infrastructure for
Interfacing and Managing OWL2 Reasoning Systems. In Proceedings of OWLED,
2009.

5. E. Sirin, B. Bulka, and M. Smith. Terp: Syntax for OWL-friendly SPARQL Queries.
In Proceedings of OWLED, 2010.

6. G. T. Williams. SPARQL 1.1 Service Description (Working Draft). http: // www.

w3. org/ TR/ sparql11-service-description/ , 2010.


