

MarcoFlow: Modeling, Deploying, and Running
Distributed User Interface Orchestrations

Florian Daniel, Stefano Soi, Stefano Tranquillini, Fabio Casati
University of Trento, Povo (TN), Italy

{daniel,soi,tranquillini,casati}@disi.unitn.it

Chang Heng, Li Yan
Huawei Technologies, Shenzhen, P.R. China

{changheng,liyanmr}@huawei.com

Abstract. This paper introduces the idea of distributed orchestration of user in-
terfaces (UIs), an application development approach that allows us to easily
bring together UIs, web services, and people in a single orchestration logic,
language, and tool. The tool is called MarcoFlow, and it covers three main
phases of the software development lifecycle: design (by means of a dedicated,
visual editor), deployment (by means of a set of code generators), and execution
(by means of a distributed runtime environment for UI orchestrations). MarcoF-
low targets the development of mashup-like applications that require (distri-
buted) process support and, hence, targets researchers and practitioners inter-
ested in mashups, lightweight process design, web services, and innovative (and
free) ways of providing process support.

1 Introduction

After workflow management (which supports the automation of business processes
and human tasks) and service orchestration (which focuses on web services at the
application layer), web mashups [1] feature a significant innovation: integration at
the UI level. Besides web services or data feeds, mashups indeed reuse pieces of UIs
(e.g., content extracted from web pages or JavaScript UI widgets) and integrate them
into new web pages or applications. While mashups therefore manifest the need for
reuse in UI development and for suitable UI component technologies, so far they
produced rather simple applications consisting of one web page and of little utility.

This demo complements the concepts and solutions introduced in [2], where we
argue that there is a huge spectrum of applications that demand for development ap-
proaches that are similar to those of mashups but that go far beyond single page appli-
cations and in fact support multiple pages, multiple actors, complex navigation struc-
tures, and – more importantly – process-based application logic or navigation flows.
We call this type of applications distributed UI orchestrations, as (i) both compo-
nents and the application itself may be distributed over the Web, (ii) in addition to
traditional web services we also integrate novel JavaScript UI components, and (iii)
services and UIs are orchestrated in an integrated fashion.

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

Challenges and contributions. Developing distributed UI orchestrations implies the
coordination of individual actors and the development of a distributed user interface
and service orchestration logic. Doing so requires (i) understanding how to compo-
nentize UIs and compose them into web applications, (ii) defining a logic that is able
to orchestrate both UIs and web services, (iii) providing a language and tool for spe-
cifying distributed UI compositions, and (iv) developing a runtime environment that is
able to execute distributed UI and service compositions.
Innovativeness of the tool. As of today, there is no single development instrument
that answers these challenges and allows one to develop UI orchestrations using one
language and one environment only. BPEL [3] focuses on web services only.
BPEL4People [4] adds human tasks and actors as first-class concepts, but without
supporting the development of suitable UIs. Model-driven web design instruments,
such as WebRatio [5] or VisualWade [6], allow the development of advanced web
applications, without however facilitating reuse of UI components sourced from the
Web. Portals and portlets [7], instead, focus specifically on reuse, but they fail in
supporting service integration and process flows. Mashup tools [1] support the inte-
gration of UIs and of services, but they typically do not support complex orchestration
patterns (if not hand-coded). In mashArt [8], we did some first steps into that direc-
tion, but without considering multi-user and distributed UI support.
Significance to the BPM field. With MarcoFlow, we go one step beyond state-of-
the-art BPM and service composition and propose an original model, language and
running system for the composition of distributed UIs. The approach brings together
UIs, web services and people in a single orchestration logic and tool and supports the
development of mashup-like applications that require (distributed) process support, a
kind of application that so far was not supported by BPM practices and software.

2 Distributed UI Orchestration

The key idea to approach the coordination of (i) UI components inside web pages, (ii)
web services providing data or application logic, and (iii) individual pages (as well as
the people interacting with them) is to split the coordination problem into two layers:
intra-page UI synchronization and distributed UI synchronization and web service
orchestration. UIs are typically event-based (e.g., user clicks or key strokes), while
service invocations are coordinated via control flows. In this demo and in [2], we
show how to describe UI components in terms of standard WSDL descriptors, how to
bind them to JavaScript, and how to extend the standard BPEL language in order to
support the two above composition layers. We call this extended language BPEL4UI.

Figure 1 shows the simplified meta-model of BPEL4UI. Specifically, the figure
details all the new modeling constructs necessary to specify UI orchestrations (gray-
shaded) and omits details of the standard BPEL language, which are reused as is by
BPEL4UI. In terms of standard BPEL [3], a UI orchestration is a process that is com-
posed of a set of associated activities (e.g., sequence, flow, if, assign, validate, or
similar), variables (to store intermediate processing results), message exchanges,
correlation sets (to correlate messages in conversations), and fault handlers. The
services or UI components integrated by a process are declared by means of so-called

partner links, while partner link types define the roles played by each of the services
or UI components in the conversation and the port types specifying the operations and
messages supported by each service or component.

Figure 1 Simplified BPEL4UI meta-model in UML. White classes correspond to standard

BPEL constructs; gray classes correspond to constructs for UI and user management.

Modeling UI-specific aspects requires instead introducing a set of new constructs
that are not yet supported by BPEL. The constructs, illustrated in Figure 1, are: UI
type (the partner link type for UI components), page (the web pages over which we
distribute the UI of the application), place holder (the name of the place holders in
which we can render UI components), UI component (the partner link for UI compo-
nents), property (the constructor parameters of UI components), and actor (the human
actors we associate with web pages).

It is important to note that although syntactically there is no difference between
web services and UI components (the new JavaScript binding introduced into WSDL
to map abstract operations to concrete JavaScript functions comes into play only at
runtime), it is important to distinguish between services and UI components as their
semantics and, hence, their usage in the model will be different. A detailed descrip-
tion of the new constructs and their usage can be found in [2].

As for the layout of distributed UI orchestrations, defining web pages and associat-
ing UI partner links with place holders requires implementing suitable HTML tem-
plates that are able to host the UI components of the orchestration at runtime. For the
design of layout templates we rely on standard web design instruments. The only
requirement the templates must satisfy is that they provide place holders in form of
HTML DIV elements that can be indexed via standard HTML identifiers following a
predefined naming convention, i.e., <div id=“marcoflow-left”>… </div>.

The main methodological goals in implementing our UI orchestration approach
were (i) relying as much as possible on existing standards, (ii) providing the develop-
er with only few and simple new concepts, and (iii) implementing a runtime architec-
ture that associates each concern to the right level of abstraction and software tool
(e.g., UI synchronization is handled in the browser, while service orchestration is
delegated to the BPEL engine).

Activity

Process

ActivityContainer

MessageExchange

Variable

PartnerLink

CorrelationSet

Catch
faultHandlers

Page

Actor

UIComponent

PlaceHolderName
Description
TemplateURL
UIEngineName
isStartPage

Name

Name

Name

accessibleTo

renderedIn

Property
Name
Value
Type

1..*

1..1

0..*

1..1
1..1

1..1

0..*1..1

0..*

PartnerLinkType
UIType

describedBy
1..1

0..1

WSDL-UI

has

contains

3 The MarcoFlow Environment

Figure 2 shows the (simplified) architecture of the MarcoFlow environment, which
aids the development and execution of distributed UI orchestrations. The architecture
is partitioned into design time, deployment time, and runtime components, according
to the three phases of the software development lifecycle supported by MarcoFlow.

The design part comprises the BPEL4UI editor that supports BPEL4UI [2], the
composition language we use to specify distributed UI orchestrations. The editor is an
extended Eclipse BPEL editor with (i) a panel for the specification of the pages in
which UI components can be rendered and (ii) a property panel that allows the devel-
oper to configure the web pages, to set the properties of UI partner links, and to asso-
ciate them to place holders in the layout.

The deployment of a UI orchestration requires translating the BPEL4UI specifica-
tion into executable components: (i) a set of communication channels that mediate

Figure 2 From design time to runtime: overall system architecture of MarcoFlow

UI engine client (web browser)UI engine client (web browser)

BPEL4UI editor

Service
WSDLs

UI component
WSDLs

BPEL4UI Compiler

BPEL engine

UI engine server (web server)

UI engine client (web browser)

UI event bus

BPEL4UI

BPEL

UI2BPEL
communication

BPEL2UI
communication

JSON via
HTTP

XML via
SOAP

SOAP web
services

Application
developer

System
configuration

Design time
Deployment time

Runtime

JS via HTTP

Layout and UI
logic generator

BPEL generator

Comm. services
generator

AB
C

UI components

A B
C

UI component container

JSON via
HTTP

XML via
SOAP

XML via SOAP

Layout
configurator

UI partner link
configurator

HTML
templates

UI
composition

Layout and
UI logic

System components

Document flows
System/human communications
Automatically generated elements

Event
forwarder
Event

forwarder
Event

forwarders

Notification
handler

Notification
handler

Notification
handlers

Event
proxy

Event
proxy

Event
buffer

Event
proxy

Event
proxy

Event
proxy

Users

between the UI components in the client browser and the BPEL engine; (ii) a stan-
dard BPEL specification containing the distributed UI synchronization and web ser-
vice orchestration logic; and (iii) a set of UI compositions (one for each page of the
application) containing the intra-page UI synchronizations. This task is achieved by
the BPEL4UI compiler, which also manages the deployment of the generated artifacts
in the respective runtime environments.

The execution of a UI orchestration requires the setup and coordination of three
independent runtime environments: (i) the interaction with users and intra-page UI
synchronization is managed in the client browser by an event-based JavaScript run-
time framework; (ii) a so-called UI engine server runs the web services implementing
the communication channels; and (iii) a standard BPEL engine manages the distri-
buted UI synchronization and web service orchestration.

The MarcoFlow system shown in Figure 2 is fully implemented and running. A pa-
tent application for parts of the system has been filed.

4 Demo scenario

An example of how MarcoFlow can be used for the development of a distributed UI
orchestration is available at http://mashart.org/marcoflow/demo.htm. The demo in
form of a video illustrates in few minutes the main features of MarcoFlow in the con-
text of a simple home assistance management application. Particular emphasis is
given to the three development phases supported by the tool (design, deployment, and
runtime) and to the use of the final application by the different actors involved in the
distributed process logic.

References

1. J. Yu, B. Benatallah, F. Casati, F. Daniel. Understanding Mashup Development and its
Differences with Traditional Integration. IEEE Internet Computing, Vol. 12, No. 5, Sep-
tember-October 2008, pp. 44-52.

2. F. Daniel, S. Soi, S. Tranquillini, F. Casati, C. Heng, L. Yan. From People to Services to
UI: Distributed Orchestration of User Interfaces. BPM’10, Hoboken, NJ, USA.

3. OASIS. Web Services Business Process Execution Language Version 2.0, April 2007.
[Online]. http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html

4. Active Endpoints Inc., Adobe Systems Inc., BEA Systems Inc., International Business
Machines Corporation, Oracle Inc., SAP AG. WS-BPEL Extension for People (BPEL4Peo-
ple), Version 1.0. June 2007.

5. R. Acerbis, A. Bongio, M. Brambilla, S. Butti, S. Ceri, P. Fraternali. Web Applications
Design and Development with WebML and WebRatio 5.0. TOOLS’08, pp. 392-411.

6. J. Gómez, A. Bia, A. Parraga. Tool Support for Model-Driven Development of Web Appli-
cations, WISE’05, pp. 721-730.

7. Sun Microsystems. JSR-000168 Portlet Specification, October 2003. [Online]. http://jcp.
org/aboutJava/communityprocess/final/jsr168/

8. F. Daniel, F. Casati, B. Benatallah, M.-C. Shan. Hosted Universal Composition: Models,
Languages and Infrastructure in mashArt. ER'09, pp. 428-443.

