
Empowering Databases for Context-Dependent
Information Delivery

Moira C. Norrie and Alexios Palinginis

Institute for Information Systems, ETH Zurich, CH-8092 Zurich, Switzerland
{norrie,palinginis}@inf.ethz.ch

Abstract. We present a web-publishing platform that was developed by inte-
grating key constructs and operations for web content delivery into the core
of an object-oriented database system. In this paper, we focus on the support
for context-dependent delivery, inclusive of time-dependent delivery. A general
model of context is based on application-specific sets of characteristics. We de-
scribe how web documents are dynamically composed from component instances,
selected according to a best match of current context state and individual instance
characteristics.

1 Introduction

Nowadays, a wide range of commercial tools and technologies are available to sup-
port the publishing of both static and dynamic data on the web. While systems such
as Coldfusion, Interwoven and Vignette offer sophisticated tools and architectures to
meet performance and scalability requirements, they lack a well-defined general model
of the basic information concepts underlying web content management [2]. As a result,
the continual demand for new requirements in this rapidly evolving domain leads to
ad-hoc solutions and increases the complexity of both the system and the development
process.

Our goal was to develop a general platform for web publishing based on a simple,
but general, model that identifies the key concepts that define a web site. The platform
is based on an object-oriented database system which was extended to support web site
engineering and operation by integrating the constructs and operations defined by that
model into the system. In this way, we empower the database system to not only manage
domain-specific data such as persons and publications, but also to control the delivery
of information through the dynamic generation of documents from database objects that
define structure and presentation.

In terms of information delivery, it is no longer sufficient to support access through
only desktop browsers. A web publishing framework has also to be able to cater for
all forms of mobile and novel devices. In addition, it must support user preferences and
context-dependent delivery. It is a matter of delivering the right information, to the right
person, at the right time. It is therefore vital that the framework is flexible enough to
adapt to, not only emerging (and even unanticipated technologies), but also the rapidly
expanding interaction sphere of hypermedia. For example, in [4], we discuss issues of
including digitally augmented paper as a first-class medium in hypermedia systems.



In this paper, we focus on our support for context-dependent information delivery,
where the notion of context is a general one that can be defined in an application-specific
manner in terms of a set of characteristics. These characteristics may include the client
device, the browser, the language and style of presentation, the user or the access his-
tory. Further, temporal context is catered for by associating the components of a web
site with temporal properties that control time-dependent information delivery.

We begin in Section 2 with a discussion of the requirements of context-dependent
delivery and related work. In Section 3, we then present an overview of our web pub-
lishing platform OMSwe and the central notion of web elements. Section 4 describes
in detail how the notions of context and state are handled in the system to produce
context-dependent delivery. Finally, concluding remarks are given in Section 5.

2 Context-Dependent Delivery

Global and mobile access to information is of increasing importance. This, in turn, has
led to requirements for systems that can adapt the delivery of information according to
the access device and situation. The content and presentation of documents delivered
in response to client requests may vary according to a whole range of factors such as
the user preferences, the client device, the communication network, the place and time
of the request, the previous information request and so on. Further, the content may
vary both in terms of its structure and the format of the basic elements from which
it is composed. For example, if we request information about a person via a mobile
phone, we may send only essential properties such as phone number and email address,
whereas, from a desktop browser, we would deliver, not only full background details,
but also associated information such as their publications. Also the format of content
elements such as images will depend on the access device and text elements may be
adapted in terms of the language and also whether full text or summarised texts are
presented.

Some projects adopt a fixed model of context. For example, in the mobile computing
domain a number of projects on context-awareness focus mainly on location (see for
example [6]). While others in this field have argued for more general models of context
e.g. [7], it is still true that the focus in these projects is on the physical infrastructure
required to provide context information and less on the effects of context in terms of
information delivery.

Since our goal was to develop a general web publishing platform, it was important
to have a general model of context enabling specific applications to define exactly what
parameters define a context state.

For a given application A, we define its context domain CA as a set of characteristic
variables {c1, c2, . . . cn} for some n ≥ 0. Each characteristic variable ci will have
an associated domain of values Vi. Then a characteristic is any given pair (ci, vi) for
ci ∈ CA and vi ∈ Vi. A valid context state CSA is any set {(ci, vi)|ci ∈ CA and vi ∈
Vi for 1 ≤ i ≤ n}.

The notion of context that we define here is the same as that proposed for semi-
structured data in [8], where they use the term dimension instead of characteristic re-
flecting the fact that they were influenced by the work on multidimensional program-



ming languages. In [8], they present MOEM, an extension of the semi-structured data
model OEM to represent multidimensional data, and describe how an MOEM docu-
ment can be transformed to an OEM document under a specific context state. Similar
ideas have been introduced into both HTML [9] and XML [1] documents to support
context-dependent variants of documents.

To support such models of context in a web-publishing platform requires a database
system that manages information about users, roles, contexts and presentations as well
as the application domain. If web-publishing support is to be integrated into the database
system, then a notion of state, and specifically context state, will have to be integrated,
along with a mechanism for dynamically generating documents from stored data based
on the current state. Further, it must be easy for application developers to specify the
context domain of an application and context-dependent properties of the content to be
delivered.

What we provide to the application developer is a general model of context and
how it can be used to manipulate information, its structure and presentation. Our focus
is therefore, not on adaptive web sites per se as described in [5], but rather on context
models and mechanisms that could be used to support the development of such sites.

We conclude this section by commenting on the wide variety of commercial content
management systems that have been developed to support both the development and
operation of complex web sites. These systems emerge from the publishing community
and, typically, the concepts in which they deal at the information level are primarily
document concepts of text, image, URL etc. rather than with semantic concepts of a
particular application domain. Thus they deal with an image of a given format, but have
no information as to what it is an image of.

This lack of semantic information about content makes it difficult to ensure con-
sistency and to link pieces of content together that represent the same logical entity.
For example, if information about a person appears on several pages of a web site, the
content editor has to manually keep track of the fact that the associated content actually
belongs together as a semantic unit. This means that when information about that per-
son is updated, or even the entire person is to be replaced, it is difficult to track where
to make the necessary changes and tedious to make them. If the information is stored
together in one place and the different instances that appear on the various web pages
dynamically generated from that information, then it is easy to make changes and avoid
inconsistencies. Note that this solution applies even if the actual instances differ greatly,
for example, a link to a person based on their name, or a full description of a person
inclusive of an image. The situation becomes much more critical when one starts to
consider multi-format and multi-lingual content.

As a result, existing software solutions for web publishing tend to develop ad-hoc
solutions to emerging requirements for context-dependent delivery. At first, entire par-
allel sites had to be developed for different languages or different access devices. This
resulted in major development costs for WAP applications that, in some cases, never
proved to be successful financially. With the introduction of XML support and atten-
tion to support for specific notions of context such as time and device, the situation
is improving, but it still lacks the true flexibility that stems from a general underlying
conceptual model.



3 OMSwe and WebElements

Our overall goal was to investigate what features need to be integrated into a database
system to provide full web publishing support for both static and dynamic web sites.
In line with our general approach to object data management, we wanted to keep the
model both simple and flexible, introducing a minimal number of new concepts into our
object data management system OMS Pro [3]. We were seeking an integrated solution
that supported both the rapid development and prototyping of applications, supporting
changes while ensuring consistency. Also, it was important that we catered for both the
development of new systems from scratch as well as publishing existing databases on
the web. Last, but not least, we wanted to support universal access from various forms
of client devices and browsers.

We begin this section by describing some general features of the OMS Pro system,
on which our web publishing platform OMSwe is based. OMS Pro is an object-oriented
database system designed to support rapid prototyping and based on the OM model
which supports role modelling through multiple instantiation and multiple classifica-
tion, and also handles links between objects through a first-class association construct.
There is a full operational model in terms of methods and triggers bound to types and
general application macros bound to databases. The system is implemented in SICStus
Prolog and operations may be implemented in either Prolog or our own language OIL
(OMS Interaction Language). Not only application data, but also system and applica-
tion metadata are represented as objects. This uniformity makes it amenable to the sort
of extensions that we discuss in this paper where new functionality is associated with
new system object types along with appropriate methods, triggers and macros.

As indicated in figure 1, a typical web page can be divided into a number of logical
components such as header, footer, menu and the central main information component
which displays the variable content. The page shown in figure 1 belongs to the internal
web site of a project and the main component lists various news items, each of which is
itself a component. Actually, in figure 1, the page is displayed under a debugging option
of OMSwe and shows, not only the page content, but also the component structure. By
clicking on the names labelling the component frames, the OMSwe objects representing
components can be displayed.

A component can be specified in terms of its content and its presentation. The con-
tent defines the dynamic information contained within the component. This can be a
combination of information retrieved or generated from database objects and references
to other nested components. In this way, the content is defined in terms of a content hi-
erarchy, where each node is bound to a database operation (macro) that generates data.
The web publishing framework is based on XML technologies, which means that con-
tent generated data is represented in XML.

The presentation specification of a component is defined in terms of templates
which are defined in XSLT. The templates determine how the content generated data is
to be presented, specifying also the appropriate markup and static content (text, images
etc) to be included in the target document. For example, it is at the template level that
the developer specifies whether XHTML, WML (Wireless Markup Language), Voice
XML or some other markup should be included in the document to be sent back to
the client. Both the content and presentation of a component may be subject to con-



Fig. 1. WebElements of a Project Web Site

text dependencies. We therefore introduced the notion of a web element to represent
an element of web component specification, whether it is a specification of content or
presentation.

Web elements are represented in OMSwe as objects of an introduced system type
webElement. The subtypes content and template are used to represent con-
tent and presentation specifications, respectively. An example of a template object,
showing the webElement part and the template part is given in figure 2.

We achieve context-dependent web pages by selecting web elements according to
the current context state. A web element is actually defined by a set of webElement
objects with the same alias and type (content or template) but different activation con-
texts. An activation context defines the set of context states in which the webElement
can be used and it is specified in terms of a set of characteristics and a valid start time
and stop time as shown in figure 2.

For any given request, the particular webElement object used will depend on a
best match between the current context state and the set of characteristics and time
properties of the set of webElement objects with the specified alias. The set of char-
acteristics can be one or more of those defined in the application’s context domain as
part of a special configuration object. The example of figure 2 has two characteristics
(protocol,html) and (style,tables). This means that it will match to con-



w
e

b
E
le

m
e

n
t

te
m

p
la

te

Fig. 2. Template Object

text states where the protocol and style context variables are set to “html” and “tables”,
respectively. For all other characteristic variables of the context domain, no values are
specified which means that it matches any value. The specification of defaults means
that there is always at least one webElement object that matches. The matching pro-
cess is performed by the OMSwe engine and is described in detail in the next section.

The time start and time stop attributes are used to specify the active period
for the webElement. If they are both set to null, the webElement will always be
active. The ability to define active periods for a webElement object is useful in many
cases where information or operations should appear on a web site for limited periods
of time, enabling it to be prepared in advance and requiring no manual intervention to
alter the appearance of a web page (or even an entire web site) at a certain point in time.
For example, after the submission date for conference papers is closed, the submission
page will automatically “close”, offering instead a page saying that the deadline has
passed. In effect, the active period for a webElement is a special form of characteristic
that belongs to the context domain of all applications and is specified in terms of two
values that define a time interval, rather than a single value. For recurring events, these
time intervals can be updated by the appropriate the request handling operations in the
database.

Thus, the set of characteristics of a webElement together with the attributes for
the valid timespan, define a valid context for the webElement. We have already
pointed out that our notion of context is exactly the same as that described for semi-
structured data in [8] and they also consider temporal validity as a special form of
context validity.

An XML generator and associated tools were integrated into the database system
to allow database objects to be published as XML and then transformed into the appro-
priate presentations using XSLT templates. We have a general XML schema for OMS
objects and provide various options in the generator functions to specify such things
as the type view of an object in the case of multiple instantiation and whether or not
attributes with null values should be included. As mentioned above, relationships be-
tween objects are represented by an association construct and it is frequently the case
that we want to include attributes of associated objects in a web component. We there-



fore introduce a notion of embedded object views in the XML generator to support
this.

To ensure a correct matching of contents and templates, we introduced a notion of
content schema. Templates are associated with content schemas to ensure both type and
structure correctness. It is possible that a content schema has more than one template
associated with it and, at the same time, a template may be used to visualise more than
one schema. Each schema, however, has a default template specified.

4 Context and State

In this section, we describe how the OMSwe engine composes document content through
the selection of webElements objects based on the current context state.

A system state consists of three parts — a set of slot bindings, a set of parameter
values and a set of characteristics. The slot bindings are to bind component slots to ac-
tual components. In this way the structure of the document is composed from smaller
content parts based on the current state. For example, in the case of figure 1, the main
component is actually a component slot and is dynamically bound to different compo-
nents to reflect the various contents that appear in the main part of the documents of
the web site. The parameters may either be component parameters or parameters for a
database operation. As described previously, the context state is the set of characteristics
and forms part of the overall system state.

State transition is based on user activation which generally is either link selection or
form submission. State information can be encoded in links by means of URL rewriting
and in forms by hidden fields. To simplify the process, OMSwe provides special markup
as part of OMSML to define links and also forms, together with any state transition in-
formation, and to generate these URL encodings. We should notice here that application
reactive behaviour should be implemented in the internal server-side session informa-
tion. This is semantically the appropriate place to handle application specific issues and
not on the user

Since the state can often involve many different variables, we further provide op-
tions to define an absolute request or relative request. In the case of a relative request,
the new state inherits the bindings, parameters and characteristics of the current state,
only overriding the variables specified explicitly in the request. In the case of an abso-
lute request, the new state is actually relative to the default state defined in the configu-
ration object. Effectively, this means that all contextual information will be lost, unless
explicitly included in the absolute request.

Figure 3 presents an overview of the state transition process and the resulting doc-
ument generation. On the left, we indicate the request state and the two options of gen-
erating the new state depending on whether it is a relative or absolute request. Once the
new state has been generated, the system starts from the root component and, following
references to nested components, builds up the document structure and presentation.
For each web element referenced, it will select the webElement that best matches the
current state and this is indicated in the right of the figure by the dark shading of one
webElement at each node of the content structure. Note that, in general, the selection
of a particular webElement at one level could have a significant effect on the resulting



new state
• Slot bindings

• Parameters

• characteristics

current state
• Slot bindings

• Parameters

• characteristics

default state
• Slot bindings

• Parameters

• characteristics

request state
• Slot bindings

• Parameters

• characteristics

relative request

absolute request

HTTP

request

webElement structure

root webElement

Instance 

selection

selected webElement instance

candidate webElement instance

Fig. 3. State Evaluation and Context Matching

document structure, since different content objects may have different associations
to other content objects and hence their content subhierarchies may be quite differ-
ent. As a simple example, we could generate a second content for the root which is
associated with a simple HTML template with the message that the site is off-line and
associated with a timespan which specifies our next major site update.

TemplatesContents

HTMLWAP
Short

Detail

Persons

MSIE

NS
Frames

Table

Online

OfflineEnglishVer

GermanVer

user

d
e
ta

il

browser

la
ng

ua
ge

sta
tu

s

protocol

sty
le

Data Structure Presentation

Fig. 4. Context Examples

The context aware mechanism can influence, not only structure, but also data and
presentation. As an example, in figure 4, we represent with arcs the different charac-
teristics of an application. With respect to structure, we have contents aimed at large
or small devices and also the on/off-line scenario described above. With respect to pre-



sentation, the templates used will depend on the protocol and, in the case of html, are
further selected based on characteristics browser and style. Finally, the actual data con-
tent may depend on the language characteristic. Different versions of person objects
will be associated with different language characteristics. Another common character-
istic is the user. Accessing data is subject to user access rights for the given user in the
current context. The user characteristic is often used to trigger different structural be-
haviour too. We have a special root webElement for the user characteristic with the
value null. This component will be used when the user is anonymous and for secure
sites this is nothing else than the root component of the login page.

We mentioned before that system state transitions are based on user intervention. By
browsing the site, the user alters the system state by requesting different components to
be placed in different slots. Of course, the user is not aware of this behaviour, but rather
it is the developer who ensures the encoding of this information in the links. Many
context characteristic values are assigned automatically without direct user intervention.
For example, the characteristics of protocol and browser are automatically extracted
from the HTTP headers. Even the language and component detail characteristics could
be extracted from the headers, but they could also be modified explicitly by the user.

We therefore define different classes of characteristics which influence the match-
ing and inheritance behaviour. The first to discuss are the major/minor characteristics.
These are characteristic pairs such as protocol and browser that build a hierarchy. The
relationship between major/minor pairs can be specified as weak or strong.

In the case of a weak relationship, the minor characteristic will only be considered
if the major characteristic value matches. We use a ’-’ to indicate a weak pairing, e.g.
de-ch could denote German language and Swiss region in a language/region pairing
of characteristics. When no content is defined for de-ch, then the region information
ch can be omitted in the matching process and the webElement objects defined for
only de will be considered. Further, when the state defines the language as de (without
specifying region), all content defined for de or de-ch are considered as candidates.

In the case of a strong relationship, both characteristic values should match the state
for a webElement object to be a candidate. For example, consider the browser/brow-
ser version pair. We use a ’:’ to indicate a strong pairing, e.g. msie:5.0 denotes Mi-
crosoft Internet Explorer version 5.0. If a template is defined for msie:5.0, then the
current state must specify exactly msie:5.0 to obtain a match. Since we cannot as-
sume compatibility between all versions of Microsoft Internet Explorer, it would not be
appropriate to match this to a context state that simply specifies msie as the browser
value.

The major/minor characteristic class can be combined with range characteristics
and list characteristics. These two constructs can be used in the context definition of a
webElement to identify a context area. For example, a range definition could be used
to specify that one template is compatible with browsers of version msie:(3.0,5.0),
while another can be used only for msie:5.0.

A web element could further be defined for multiple language/region pairs. For
example, one template with [de-de, de-au] applies to a site to handle commercial
transactions for Germany and Austria, while another with de-ch deals with the special



case of Switzerland which is not in the European Community. A combination of range
definition and lists is also allowed.

A state typically defines many characteristics which opens the issue of defining a
best match algorithm. Characteristics are defined as mandatory or optional. For exam-
ple, the protocol characteristic is mandatory. It would make no sense to send a WAP
document to an HTML browser just because the content happens to match all other
characteristics such as language, region and style. On the other hand, if no content ex-
ists for the Greek language (state defines language=gr), it would make sense to use an
English version.

The matching algorithm is further aware of a characteristic prioritisation defined by
the developer. It might be the case for instance that we want to give a higher priority on
matching the correct language over a less significant characteristic such as the presenta-
tion format. We define therefore 0 < p(ci) ≤ 1 as the priority of a given characteristic.

We are now ready to extend the definitions from section 2 by adding for any webele-
ment k (representing either data, structure or presentation) the webelement profile Ik as
a set of {(ci, di)|ci ∈ CA and di ∈ CDAfor some i ∈ 1 ≤ i ≤ n}. The characteristic
definition pattern CDA is any valid definition pattern of a characteristic value such as
the above mentioned weak, strong, range and priorities lists.

The matching algorithm will search for the current state the webelements of a given
class for the one that best match according to their profiles. For each characteristic pat-
tern definition a characteristic weight Wk,i will be calculated according to the following
table:

Pattern/Class State Webelement k Profile Weight Wk,i

mandatory X Y (Y �= X) 0 (not considered)
any major major 1
weak major-X major-X 1
weak major-X major 2
weak major major-X 2
weak major-X major-Y (Y �= X) 2
strong major:X major:X 1
strong major:X major:(A,B) 1 if X in [A,B]
strong major:X major 2
any X (A,B) 1 if X in [A,B]
priority list X [A,..,X,..,B] pos(X)3

The matching algorithm will sum the rankings results for all characteristics defined
for each webElement for the current context weighted by the characteristic priorities,
thus the weight of an item k for the current state is:

Wk =
∏n

i=1 p(ci) ∗ Wk,i

The one with the highest ranking (lowest number greater than zero) will be chosen. In
the case that no webElement could be chosen, the default will be used. The current
algorithm gives lower ranking when matching values defined deeper in a list construct
as indicated in the last row of the table. In this way, we assign the list a priority seman-
tic. Furthermore, the weight of priority is much less than the weight from matching first
choice characteristics. In this way, webElement objects that match some first choice



characteristics will be preferred over webElement objects that match even more char-
acteristics but are defined lower in the priority list. The priority weight can be defined
differently for each characteristic giving the possibility to even consider the list values
as equal to each other.

The number of optional matched characteristics and the matching position in the
case of list definitions influence the ranking. In the rare case of equal total weights for
two or more candidates, a random or default webElement can be used.

Finally, we stress that with this approach it is possible to have a very rich model
of context that takes into account many factors, without having to define a unique
webElement object for each possible combination. This not only reduces the devel-
opment time, but also unnecessary replication.

5 Conclusions

We have described the general concept of web elements that were integrated into the
object data management systems OMS Pro to provide a general web publishing plat-
form. A key feature of the system is its support for global access to information. This
means that it can adapt both the content, the structure and the presentation of documents
according to the properties of the user, the client device and the application through the
use of a single general concept. Specifically, each application can specify a set of char-
acteristics that define contextual factors that may influence the information delivered in
response to a user or application request.

The OMSwe system has been used to develop a number of operational web sites
and also in teaching. It has also been used to develop a general web interface for OMS
databases as well as development and debugging tools for the OMSwe system itself.

References

1. M. Gergatsoulis, Y. Stavrakos, and D. Karteris. Incorportaing Dimensions to XML and DTD.
In In Database and Expert Systems Applications (DEXA’01), Munich, Germany, September
2001.

2. M. Grossniklaus and M. C. Norrie. Information Concepts for Content Management. In Proc.
Intl. Workshop on Data Semantics in Web Information Systems (DASWIS 2002), Singapore,
December 2002.

3. A. Kobler, M. C. Norrie, and A. Würgler. OMS Approach to Database Development
through Rapid Prototyping. In Proc. 8th Workshop on Information Technologies and Systems
(WITS’98), Helsinki, Finland, December 1998.

4. M. C. Norrie and B. Signer. Issues of Information Granularity and Semantics in Cross-Media
Publishing. In Proc. 15th Conference on Advanced Information Systems Engineering (CAiSE
2003), June 2003.

5. Mike Perkowitz and Oren Etzioni. Towards adaptive Web sites: conceptual framework and
case study. Computer Networks (Amsterdam, Netherlands: 1999), 31(11–16):1245–1258,
1999.

6. Bill Schilit, Norman Adams, and Roy Want. Context-aware computing applications. In IEEE
Workshop on Mobile Computing Systems and Applications, Santa Cruz, CA, US, 1994.

7. Albrecht Schmidt, Michael Beigl, and Hans-W. Gellersen. There is more to context than
location. Computers and Graphics, 23(6):893–901, 1999.



8. Y. Stavrakas and M. Gergatsoulis. Multidimensional Semistructured Data: Representing
Context-Dependent Information on the Web. In Proc. 14th Conference on Advanced Informa-
tion Systems Engineering (CAiSE 2002), Toronto, Canada, June 2002.

9. W.W. Wadge, G.D. Brown, M.C. Schraefel, and T. Yildirim. Intensional HTML. In Proc. 4th
Intl. Workshop on Principles of Digital Document Processing (PODDP’98), March 1998.


	Str: 
	:891: 90
	:901: 91
	:911: 92
	:921: 93
	:931: 94
	:941: 95
	:951: 96
	:961: 97
	:971: 98
	:981: 99
	:991: 100
	:1001: 101



