
Modeling and Prototyping of Real-Time Embedded
Software Architectural Designs with Colored Petri Nets

Robert G. Pettit IV1, Hassan Gomaa2, and Julie S. Fant1

1 The Aerospace Corporation,
Chantilly, Virginia, USA

{robert.g.pettit, julie.s.fant}@aero.org
2 George Mason University

Fairfax, Virginia, USA
{hgomaa}@gmu.edu

Abstract. This paper describes an approach for constructing rapid prototypes to
assess the behavioral characteristics of real-time embedded software
architecture designs. Starting with a software architecture design nominally
developed the using COMET concurrent object-oriented design method, an
executable Colored Petri Net (CPN) prototype of the software architecture is
developed. This prototype allows an engineer / analyst to explore behavioral
and performance properties of a software architecture design prior to
implementation. This approach is suitable both for the engineering team
developing the software architecture as well as independent assessors
responsible for oversight of the software architecture design.

Keywords: UML, rapid prototyping. coloured Petri-nets, real-time, embedded,
concurrent, software architecture.

1 Introduction

The increasing complexity of software-intensive real-time embedded systems,
particularly with respect to the behavior of concurrently executing software tasks,
requires a thorough understanding of software architecture behavioral properties and
tradeoffs among design decisions. Analyzing and understanding the concurrent
behavior of real-time embedded software architectures during the early design stages
is imperative to the successful and cost-effective development of the system. To
address this issue, we present an approach for constructing rapid prototypes of
embedded systems to assess the behavioral characteristics of concurrent software
architecture designs. The approach leverages software design nominally developed
using the COMET concurrent object-oriented design method [1] and reusable Colored
Petri Net (CPN) [2] templates and components to rapidly prototype a concurrent
software architecture. The goal of the CPN prototype is to compare and assess
concurrent software architecture behavior to determine if the software architecture is
feasible before spending valuable resources on hardware purchase, development,
testing, etc. This paper expands on previous work [2] by specifically focusing on

MoDELS 2011 ACES-MB Workshop Proceedings

Wellington, New Zealand, October 18, 2011 85

rapid prototyping / independent analysis of concurrent software architectures using
reusable CPN components and templates. The complete set of CPN templates for the
Unified Modeling Language (UML) [23] behavioral patterns used in this approach
were defined in [2]. The resulting approach should provide the ability to quickly
develop prototypes of software architecture.

1.1 Related Research

Prototyping the concurrent behavior of a real-time embedded system at design time is
important to determine whether the system, with its set of concurrent tasks, behaves
as desired both in terms of functionality and performance. If potential problems can
be detected early in the life cycle, steps can be taken to overcome them.

Typical modeling and analysis methods include event sequence and queuing
modeling [1, 3]; simulation modeling [4]; and scheduling analysis [3, 5, 6]. In recent
years, there has been an increased effort to construct executable models of software
designs and thus allow the logic of the design to be simulated and tested before the
design is implemented. Existing modeling tools such as IBM® Rational® Rose®
Technical Developer [7] and Ilogix Rhapsody [8] frequently use statecharts [9] as the
key underlying mechanism for dynamic model execution. An alternative approach is
to model concurrent object behavior using Petri Nets [10-14]. Our efforts [2, 14]
have specifically focused on a Colored Petri Net (CPN) approach in which behavioral
patterns are identified for objects via UML stereotypes in the software architecture
and then modeled with CPN templates matching the behavioral patterns. We have
chosen this approach since CPNs provide excellent modeling, analysis, and
simulation capabilities for concurrent systems. Additionally, our approach supports
independent assessments of the software architecture without requiring the software
architect to adapt to a new paradigm. Furthermore, while our method for constructing
architecture and design models is based on the COMET [1] approach, any design
method that provides guidance on identification and classification of object roles and
the structuring of concurrent tasks would be sufficient for our CPN modeling and
analysis approach. With respect to COMET, we specifically use the stereotyped
behavioral patterns for class roles, including input/output classes; control classes;
entity classes; and algorithmic classes. We also use COMET’s strategies for
structuring concurrent tasks using UML active objects.

2 Rapid Prototyping Approach

The purpose of this paper is to describe an approach leveraging executable CPNs for
the rapid prototyping of the behavior of communicating, concurrent tasks that make
up the software architecture design of a real-time embedded. The purpose of the CPN
prototypes proposed in this approach is to simulate the concurrently executing
software tasks and to enable analysis and understanding of the concurrent behavior
during the early design stages.

MoDELS 2011 ACES-MB Workshop Proceedings

Wellington, New Zealand, October 18, 2011 86

The proposed rapid prototyping approach has four major steps that are: 1) Develop
the platform independent software architecture 2) Create the platform specific
software architecture 3) Construct the CPN prototype 4) Execute and analyze the
CPN prototype. Each step is described below in more detail.

2.1 Develop the Platform Independent Software Architecture Model

The first step in our approach is to develop the platform independent software
architecture model (PIM). The purpose of the PIM is to capture the concurrent object
behavior in the form of concurrent behavioral design patterns (BDP), which in
subsequent steps will be mapped to CPN templates or components [2]. As discussed
in previous work, each BDP represents the behavior of concurrent objects together
with associated message communication constructs, and is depicted on a UML
concurrent interaction diagram. Each object is assigned a behavioral role (such as
I/O, entity, or control) which is given by the COMET concurrent object structuring
criteria [1] and depicted by a UML stereotype. An example of a behavioral design
pattern for an asynchronous device input concurrent object is given in Figure 1. Note
that these behavioral patterns are commonly seen across the UML community as
«bondary», «entity», and «control». With out approach using the COMET method,
however, additional details are provided for such things as specifying input and
output, identifying concurrency properties, and defining state-dependent behaviors.

Fig. 1. Asynchronous input concurrent object behavioral design pattern

2.2 Create the Platform Specific Software Architecture Model

The second step in our rapid prototyping approach is to develop the platform specific
software architecture model (PSM). The purpose of the PSM is to capture the
performance characteristics of how the software architecture will perform if
implemented on a specific platform. To enable fast construction of PSMs, the UML
PIM model should be annotated with platform specific characteristics. This is quicker
than creating a separate or external PSM model.

Platform specific characteristics and values can then be directly added to the UML
software architecture model using a UML Profile such as the UML Profile for
Modeling and Analysis of Real-time and Embedded Systems (MARTE) [21]. The
MARTE Profile provides the ability to capture non-functional performance
characteristics directly in UML models. For example, tagging a message in an
interaction diagram with the <<paStep>> stereotype indicates that it is a step in

MoDELS 2011 ACES-MB Workshop Proceedings

Wellington, New Zealand, October 18, 2011 87

sequence that uses resources. The specific platform specific values, such as execution
time, can be captured in the stereotype’s tags like hostDemand.

Performance values can be determined from published information about the
platform, as well as through measurement. Note that multiple PSMs can be applied to
a given architecture, supporting prototypes for tradeoff analyses. These models may
also be constructed at varying levels of fidelity depending on available information.
As the development efforts mature, so then can the prototypes of the architecture.
During this process, collaboration with domain experts and systems engineers is
highly recommended in order to capture the most realistic and complete set of
platform specifications. Section 3 of this paper illustrates both a PIM and PSM for a
robot controller case study.

2.3 Construct the CPN Prototype

After the PSM is developed, an executable CPN prototype from the PSM can be
systematically constructed. For each BDP in the PSM (identified by a UML
stereotype), a self-contained CPN template is required, which by means of its places,
transitions, and tokens, models a given concurrent behavioral pattern. A set of
existing reusable CPN templates can be found in [2]. These templates include: I/O
(boundary); entity; control; and algorithm. As an example, Figure 2 is the CPN
template for an asynchronous device input concurrent object shown in Figure 1.

Fig. 2. Asynchronous input concurrent object CPN template

To instantiate the templates for each specific object, an analyst using our approach

must provide a certain set of architectural parameters captured by following tagged
values:

-Execution Type: passive, asynchronous, or periodic
-IO: input, output, or I/O
-Communication Type: synchronous or asynchronous
-Activation Time: periodic activation rate
-Processing Time: estimated execution time for one cycle
-Operation Type: read or write
-Statechart: for each «state dependent» object.

MoDELS 2011 ACES-MB Workshop Proceedings

Wellington, New Zealand, October 18, 2011 88

To illustrate pairing these architectural parameters with BDPs, refer to Figures 1
and 2. Figure 1 is an active object, “asyncInputInterface” that implements the I/O
behavioral pattern as indicated by its stereotype. Furthermore, tagged types are used
to capture specific architectural properties of the object, namely that it executes
asynchronously; handles only input; and has a yet-to-be specified processing time of
<process time>. The resulting CPN representation in Figure 2 reflects these
parameters with the selection of an asynchronous, input-only CPN template and by
setting the time inscription on the Process Input transition to @+<process time>.

This <process time> parameter is an estimate of the time required by the object to
complete one activation cycle. This information can be obtained directly from UML
MARTE annotations in the PSM. For example, process time can be found in the
<<paStep>> stereotype in the hostDemand tag.

Since CPN templates provide only the basic behavioral pattern and component
connections, they must be refined to provide application specific behavior.

To rapidly support construction of the prototype, we recommend using a reuse
repository of CPN components. A CPN component is an elaborated CPN template
for a commonly used object. For example, if a company commonly uses a specific
sensor, a CPN component can be created for the software controller for the particular
sensor. This CPN component can then be reused quickly in multiple different
prototypes. Reusing CPN components will ultimately reduce the time it takes to
construct the CPN prototypes. This is critical in rapid prototyping environments.

After all the BDPs in the PSM have an associated CPN templates or CPN
components, the CPN templates and components are then interconnected via
connector templates to create a prototype of the software architecture. The CPN
prototype is then executed using a CPN tool, thereby allowing the designer to analyze
both the concurrent behavior of the CPN prototype, with a given external workload
applied to it.

3. Case Study: Robot Control

We illustrate our rapid prototyping approach using a robot controller case study based
on the Lego® Robotics Invention System™ (RIS), commonly known as
Mindstorms™ [16]. The RIS platform was chosen based on the embedded nature of
the platform with easily reconfigurable sensors and actuators [18].

The robot controller case study is an autonomous rover employing an infrared light
sensor and two motors (actuators). The goal of the rover is to search an area for
colored discs, while staying within the course boundary and avoiding obstacles. In
this case study, the light sensor is the sole input sensor, responsible for detecting
boundary markings, obstacle markings, and discs according to different color
schemes. This case study was used as a term project for a graduate course on real-
time embedded software engineering at George Mason University.

MoDELS 2011 ACES-MB Workshop Proceedings

Wellington, New Zealand, October 18, 2011 89

3.1 Robot Controller PIM

The architecture model for the autonomous rover is illustrated in Figure 3. In this
particular scenario, we are interested in navigating the course; responding to changes
from the light sensor; and taking the appropriate action based on the detection event.

Fig. 3. Robot controller PIM interaction diagram

In this design, there are three active, concurrently executing objects (detect, rover,
and nav) and one passive object (map). External I/O objects (depicted as actors in
Figure 3) are also shown for receiving light sensor input and for modeling output to
the two motors. Following object structuring guidelines from the COMET method,
each of the objects in the system is stereotyped according to the hierarchy previously
shown in Figure 1. These stereotypes indicate the behavioral design pattern (BDP)
implemented by each object. Further details about the behavioral properties are
augmented with the architectural parameters as follows:

The detect, rover, and nav objects all operate asynchronously and have an
Execution Type tagged value of “async”. As the input interface for the light sensor,
the detect object has an IO tagged value of “input”. All messages between the active
objects have a Communication Type tagged value of “synchronous”, indicating
synchronous, buffered communication. This particular design decision was made to
decrease the risk of missing a boundary or obstacle detection event. Other design
choices for this system would be to employ FIFO or priority queuing. The affects of
these design decisions could also be analyzed using the techniques presented in this
paper, but are not shown due to space limitations. Finally, the update() operation on
the map object has an Operation Type tagged value of “writer”.

Note that values for the Processing Time parameters are left unspecified at this
point as we will set these parameters based on the PSM in the next section.

MoDELS 2011 ACES-MB Workshop Proceedings

Wellington, New Zealand, October 18, 2011 90

3.2 Robot Controller PSM

The next step in our approach is to create a platform specific model for the target
platform. This is shown in Figure 4 using historical data and hardware specifications
for the RIS system [18-20].

In this model, our rover is identified as the single node in the system and is based
on the Robot Command eXplorer (RCX) platform. The RCX is the central
component to any RIS system and houses the Hitachi H8 microcontroller with a 16
MHz CPU. Paired with the leJOS Java environment the execution speed of this CPU
is documented to be 1750 operations per second (OPS).

Fig. 4. Robot controller PSM interaction diagram

Additionally, there are 16 KB of ROM and 28 KB of RAM available on the RCX

of which, 17.5 KB of RAM are used by the leJOS operating system. The system
clock resolution on the RCX, at 1ms, is longer than the time required for observed
context switching between concurrent threads, thus the leJOS.overhead is set to zero.
In our system, there are three physical devices attached: one light sensor at port S2
and two motors at ports A and C. Independent control of these motors is used to steer
the rover; turning is achieved by rotating the left (Motor A) and right (Motor C)
motors in opposite directions. Using historical data, the detection latency of the light
sensor was set at 10.3 ms, while the output latency of the motors was set at 1 ms.

It would also be useful to combine the information from the PSM with historical
data on software size. This type of information is commonly maintained by software

MoDELS 2011 ACES-MB Workshop Proceedings

Wellington, New Zealand, October 18, 2011 91

development organizations and, in our case, we will rely on average software sizes
across the set of student projects. From this data, we discover the following:

«IO» objects average 19 instructions (in Java bytecode) per execution cycle and
have an average size of 1,182 bytes.

«coordinator» objects average 27 instructions and 2,722 bytes.
«algorithm» objects average 89 instructions and 1,015 bytes per algorithm.
«entity» objects average 1,400 bytes.

Now, using the combined historical sizing data and information from the rover, we
can augment the PSM with this platform specific information. Prior to the CPU being
available for performance measurement, an initial estimate of the execution time is
computed by multiplying the estimated average number of instructions by the
computational speed of the CPU (1750 OPS in our PSM example). These estimates
are captured in the hostDemand tag.

3.3 CPN Prototype

Using the above PSM design information, we can now begin to construct a Colored
Petri Net (CPN) prototype of the software architecture [2]. Using our approach, we
start with a context level model, capturing the system as a black box (transition) and
external sensors and actuators represented as places. This model, allowing us to focus
on the highest level of abstraction with observed inputs and outputs is shown in
Figure 5.

Fig. 5. Robot controller context level CPN

Moving forward, our second step is to decompose the RoverBot system-level
transition into a layer of abstraction representing the concurrent object architecture.
This architecture level model is shown in Figure 6. At this level, each of the active
objects from is represented as its own transition (box) in the CPN prototype. Each of
these will be further decomposed to implement the specific CPN template matching
the objects behavioral design pattern or a CPN component if one exists for the object.
We have also included the single «entity» object containing map data and it is
represented by a place for the map data to be stored along with a transition and two
places representing the behavior for calling the update() operation. Finally, as all
message communication between active objects in the RoverBot system is
synchronous, there is a CPN place modeling a buffer for the synchronous

MoDELS 2011 ACES-MB Workshop Proceedings

Wellington, New Zealand, October 18, 2011 92

communication between detect and rover and between rover and nav. Notice that our
external input and output places have also been carried down to this level as well.

Fig. 6. Robot controller CPN architecture

Once an architecture-level model is established, each of the transitions
representing an active object is then decomposed by applying the CPN template
associated with the behavioral design pattern of that object. For the asynchronous,
input-only «IO» object, “detect”, this CPN object-level model is shown in Figure 7.
Here, the CPN template has been inserted and instantiated specifically for the detect
object by setting the object ID to “1” as seen by the number appended to place and
transition names. The specific control token, C1 has also been added as has the
function for processing detections, “detection (sensorReading)”. To maintain
consistency, the main transition of this template, Pin1, has also been connected to the
sensor input place and to the roverBuf message buffer place.

Now, using the combined historical sizing data and information from the rover
PSM, we can augment the architectural parameters within the CPN prototype to
obtain further insights as to the behavioral and performance aspects that should be
expected when matching the original platform independent design model with the
actual platform characteristics of the target implementation.

MoDELS 2011 ACES-MB Workshop Proceedings

Wellington, New Zealand, October 18, 2011 93

Fig. 7. CPN template for the “detect” object

To begin, we add a place, RAM, to our CPN prototype. This will model the
available memory resources measured in bytes. The initial token value for the RAM
place is calculated by subtracting the leJOS memory overhead along with the average
RAM usage for the objects in our architecture from the total available RAM specified
in the PSM.

Table 1. Calculating Memory Availability

Source Memory (Bytes)
ram.sizeKB 28,672
lejos.kbMemOverhead 17,920
«IO» detect 1,182
«coordinator» rover 2,722
«algorithm» nav 2,030
«entity» map 1,400

Available RAM: 3,418

Once the rover system begins execution, the primary consumption of memory

occurs when points are added to the map object. For each point added to the map, 16
bytes are used for x and y coordinates; detection event; and timestamp. To prototype
this memory consumption, the RAM place from the CPN context level model is
attached to the Update transition of the map object’s CPN representation on the
architecture level model. This is shown in Figure 8. Using this approach, 16 bytes
are subtracted from the available RAM each time the update operation is called. If

MoDELS 2011 ACES-MB Workshop Proceedings

Wellington, New Zealand, October 18, 2011 94

the system reaches a point where less than 16 bytes are available, then the CPN model
will be suspended.

Next, the <process time> parameter will be updated for each active object
template. This information can be obtained from hostDemand tag in the PSM’s
<<psStep>> stereotype. Additionally, each «IO» object template will add the
detection or output latency to the <process time>. For example, the detect object,
responsible for interfacing with the light sensor, would have a basic <process time> of
10.8ms. An additional 10.3ms are then added to account for the value of
lightSensor.detectionLatency from the PSM, resulting in a total time delay 21ms.
Once time values have been allocated to all objects, we can move forward with
analyzing the prototype of the architecture as described in the next section.
These initial estimates can eventually be replaced with higher fidelity data as it
becomes available, allowing an engineer to refine the behavioral analysis as desired.

Fig. 8. Consumption of RAM by “map” object

3.4 Analyzing the Prototype

Recall from the sequence diagram of that the primary purpose of the autonomous
rover system is to navigate an area, mapping objects discovered by the light sensor
and taking evasive action when the light sensor detects obstacles or course
boundaries. To begin analyzing this behavior with the corresponding CPN prototype,
we use a test driver to provide simulated input events at random intervals. One of the
first things we want to discover is how quickly the architecture responds to the
detection of an obstacle or boundary. This can be analyzed from the context-level
model by taking the difference in time stamps from the time an obstacle or boundary
event arrives on the light sensor place to the time that a command is issued to the
motors. For example, if the first obstacle was detected at time 6459 (all time is in
milliseconds in this model). From the timestamps on the Motor places, we can see
that from the time an input arrives to the time the system responded, there was an

MoDELS 2011 ACES-MB Workshop Proceedings

Wellington, New Zealand, October 18, 2011 95

elapsed time of 31ms. This information could then be used, along with the speed of
the rover, to determine if the reaction time is sufficient using this software
architecture and this particular platform.

Other forms of analysis could include observing the memory usage over time or
investigating the interaction among the concurrent objects as the simulated input rate
varies. Analysis of physical architectural variations such as different light sensors or
motors could also be conducted by applying different PSMs. Analysis of software
architecture variations such as the use of different message communication
mechanisms (e.g. FIFO or priority queuing) between the active objects could also be
explored. These analyses are not shown due to space limitations in this paper.

3.5 Comparing Prototype with Observations

To validate our prototype, the rover design presented above was implemented in
leJOS and the code was instrumented to capture timestamps. Execution of the rover
when presented with boundaries or obstacles initially identified actual response times
of 25-27ms from the point that the light sensor was presented with the boundary or
obstacle to the point that the first motor command was output in response to the
detection. This is slightly under the 31ms estimated by our analysis in the previous
section. Interestingly, though, as we conducted tests with the rover over time, we
observed response times increasing as battery power decreased. The above
measurements of 25-27ms were observed with fully charged (9.0V) batteries.
However, response times of up to 33ms were observed as the battery power was
depleted to 8.2V. These results are summarized in Table 2 below. Replacing the
depleted batteries with a fully charged set returned the response times to the initially
observed 25-27ms. Thus, we believe that future research should include a power
source with the embedded platform specific model.

Table 2. Response Time Results

Response Time in Milliseconds Team
Run 1 Run 2 Run 3 Run 4

1 27 27 29 33
2 25 26 27 27
3 26 25 26 28
4 26 27 29 32
5 25 25 26 26

4 Conclusions and Future Research

In this paper, we have presented an approach to combine information from platform-
independent and platform-specific models to construct prototypes of software
architectures for embedded systems. This approach allows an engineer / analyst to
examine behavioral and performance properties of a software architecture design

MoDELS 2011 ACES-MB Workshop Proceedings

Wellington, New Zealand, October 18, 2011 96

paired with a candidate implementation architecture. The underlying CPN prototype
is particularly useful in modeling concurrent object architectures in event-driven, real-
time embedded systems. Applying the behavioral design patterns in the UML-based
design along with corresponding CPN templates and components, the results from the
analyses can be directly mapped back to the original design artifacts. Furthermore, by
employing architectural parameters such as processing time, the CPN analysis model
can be rapidly modified to account for different candidate architectures.

There are other tools available for constructing executable models of software
designs such as the Rhapsody tool by IBM® [24]. While these tools are certainly
useful, we feel there are certain advantages to our CPN approach. Modeling and
prototyping of the architecture design is possible without depending on a particular
UML modeling tool or design method – we only require that the basic behavioral
patterns be identified. In fact, while we illustrate this approach with the UML, there
is really no need to enforce the use of UML as long as the patterns can be identified
for individual software abstractions. One such study applying this approach to a non-
UML design is currently underway and will be published in the future. Furthermore,
our CPN approach is more tolerant to varying levels of fidelity than other executable
modeling tools. Using Rhapsody as an example again, each object must have detailed
specifications (typically in the form of a state machine) in order for the model to be
executed. With the CPN approach, even the most basic architecture designs can be
simulated to show concurrent interactions, with increasing levels of fidelity as more
specifications are added.

Future research in this area must continue to examine properties that should be
captured and the most effective ways in which to capture them. In comparing our
observed results to our analyses, the inclusion of a power model would obviously be
desired in an embedded system. Additionally, future work should consider the ability
to model distributed software designs configured to execute on multiple distributed
embedded nodes and the communication between them. Finally, as mentioned
above, work is also underway to provide a more generic approach to the executable
CPN approach that allows for flexibility in the origin of the software design, whether
that is captured in UML or other modeling languages.

References

1. H. Gomaa, Designing Concurrent, Distributed, and Real-Time Applications
with UML, 1 ed: Addison-Wesley, 2000.

2. R. Pettit and H. Gomaa, "Modeling behavioral design patterns of concurrent
objects," presented at ICSE 2006, Shanghai, China, 2006.

3. L. Sha and J. B. Goodenough, "Real-Time Scheduling Theory and Ada,"
IEEE Computer, vol. 23, pp. 53-62, 1990.

4. C. W. Smith, Performance Engineering of Software Systems: Addison
Wesley, 1990.

5. H. Gomaa and D. Menascé, "Performance Engineering of Component-Based
Distributed Software Systems," in Performance Engineering 2001, LNCS:
Springer, 2001, pp. 40-55.

MoDELS 2011 ACES-MB Workshop Proceedings

Wellington, New Zealand, October 18, 2011 97

6. SEI, A Practioner's Handbook for Real-Time Analysis - Guide to Rate
Monotonic Analysis for Real-Time Systems. Boston: Kluwer, 1993.

7. IBM, "IBM Technical Developer," 2006.
8. Ilogix, "Ilogix Rhapsody," Ilogix, 2006.
9. D. Harel and E. Gery, "Executable Object Modeling with Statecharts," 1996.
10. M. Baldassari, G. Bruno, and A. Castella, "PROTOB: an Object-oriented

CASE Tool for Modelling and Prototyping Distributed Systems," Software-
Practice & Experience, vol. 21, pp. 823-44, 1991.

11. O. Biberstein, D. Buchs, and N. Guelfi, "Object-Oriented Nets with
Algebraic Specifications: The CO-OPN/2 Formalism," in COPN, Advances
in Petri Nets, LNCS: Springer-Verlag, 2001, pp. 73-130.

12. L. Baresi and M. Pezze, "On Formalizing UML with High-Level Petri Nets,"
in COPN, Advances in Petri Nets, LNCS. Berlin: Springer-Verlag, 2001, pp.
276-304.

13. K. M. Hansen, "Towards a Coloured Petri Net Profile for the Unified
Modeling Language - Issues, Definition, and Implementation," Centre for
Object Technology, Aarhus, Denmark, Technical Report COT/2-52-V0.1,
2001.

14. R. Pettit and H. Gomaa, "Modeling Behavioral Patterns of Concurrent
Software Architectures Using Petri Nets," presented at 4th WICSA, Oslo,
Norway, 2004.

15. B. Huber, R. Obermaisser, P. Peti, and C. E. Salloum, "Resource
Specification of the DECOS Integrated Architecture," TU Wien, Vienna,
Austria, Technical Report October 12, 2005 2005.

16. Lego, "Lego Mindstorms - http://mindstorms.lego.com."
17. R. Pettit, "SWE 626: Software Project Lab for Real-Time and Embedded

Systems," George Mason University, 2006.
18. B. Bagnall, Core LEGO MINDSTORMS Programming: Unleash the Power

of the Java Platform: Prentice Hall, 2002.
19. K. Proudfoot, "RCX Internals - http://graphics.stanford.edu/~kekoa/rcx/,"

1999.
20. N. S. Andersen and M. N. Kjærgaard, "Advanced programming of the

LEGO RCX for education," Technical University of Denmark, 2001.
21. UML Profile for Modeling and Analysis of Real-time and Embedded

Systems (MARTE) Beta 2, OMG In, June 2008, http://www.omg.org/cgi-
bin/doc?ptc/2008-06-08

22. UML Profile for Schedulability, Performance and Time 1.1, February 2005,
OMG Inc.,
http://www.omg.org/technology/documents/formal/schedulability.htm

23. Unified Modeling Language (UML), Version 2.2, February 2009, OMG,
http://www.uml.org.

24. IBM® Rational® Rhapsody, http://www-01.ibm.com/software/awdtools/
rhapsody/

MoDELS 2011 ACES-MB Workshop Proceedings

Wellington, New Zealand, October 18, 2011 98

