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Abstract. This paper describes an approach for constructing rapid prototypes to 
assess the behavioral characteristics of real-time embedded software 
architecture designs.  Starting with a software architecture design nominally 
developed the using COMET concurrent object-oriented design method, an 
executable Colored Petri Net (CPN) prototype of the software architecture is 
developed.  This prototype allows an engineer / analyst to explore behavioral 
and performance properties of a software architecture design prior to 
implementation. This approach is suitable both for the engineering team 
developing the software architecture as well as independent assessors 
responsible for oversight of the software architecture design.  

Keywords: UML, rapid prototyping. coloured Petri-nets, real-time, embedded, 
concurrent, software architecture. 

1   Introduction 

The increasing complexity of software-intensive real-time embedded systems, 
particularly with respect to the behavior of concurrently executing software tasks, 
requires a thorough understanding of software architecture behavioral properties and 
tradeoffs among design decisions.  Analyzing and understanding the concurrent 
behavior of real-time embedded software architectures during the early design stages 
is imperative to the successful and cost-effective development of the system.  To 
address this issue, we present an approach for constructing rapid prototypes of 
embedded systems to assess the behavioral characteristics of concurrent software 
architecture designs. The approach leverages software design nominally developed 
using the COMET concurrent object-oriented design method [1] and reusable Colored 
Petri Net (CPN) [2] templates and components to rapidly prototype a concurrent 
software architecture. The goal of the CPN prototype is to compare and assess 
concurrent software architecture behavior to determine if the software architecture is 
feasible before spending valuable resources on hardware purchase, development, 
testing, etc. This paper expands on previous work [2] by specifically focusing on 
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rapid prototyping / independent analysis of concurrent software architectures using 
reusable CPN components and templates.   The complete set of CPN templates for the 
Unified Modeling Language (UML) [23] behavioral patterns used in this approach 
were defined in [2]. The resulting approach should provide the ability to quickly 
develop prototypes of software architecture. 

1.1   Related Research 

Prototyping the concurrent behavior of a real-time embedded system at design time is 
important to determine whether the system, with its set of concurrent tasks, behaves 
as desired both in terms of functionality and performance. If potential problems can 
be detected early in the life cycle, steps can be taken to overcome them.  

Typical modeling and analysis methods include event sequence and queuing 
modeling [1, 3]; simulation modeling [4]; and scheduling analysis [3, 5, 6].  In recent 
years, there has been an increased effort to construct executable models of software 
designs and thus allow the logic of the design to be simulated and tested before the 
design is implemented. Existing modeling tools such as IBM® Rational® Rose® 
Technical Developer [7] and Ilogix Rhapsody [8] frequently use statecharts [9] as the 
key underlying mechanism for dynamic model execution. An alternative approach is 
to model concurrent object behavior using Petri Nets [10-14].  Our efforts [2, 14] 
have specifically focused on a Colored Petri Net (CPN) approach in which behavioral 
patterns are identified for objects via UML stereotypes in the software architecture 
and then modeled with CPN templates matching the behavioral patterns.  We have 
chosen this approach since CPNs provide excellent modeling, analysis, and 
simulation capabilities for concurrent systems.  Additionally, our approach supports 
independent assessments of the software architecture without requiring the software 
architect to adapt to a new paradigm.  Furthermore, while our method for constructing 
architecture and design models is based on the COMET [1] approach, any design 
method that provides guidance on identification and classification of object roles and 
the structuring of concurrent tasks would be sufficient for our CPN modeling and 
analysis approach.  With respect to COMET, we specifically use the stereotyped 
behavioral patterns for class roles, including input/output classes; control classes; 
entity classes; and algorithmic classes.  We also use COMET’s strategies for 
structuring concurrent tasks using UML active objects. 

2   Rapid Prototyping Approach 

The purpose of this paper is to describe an approach leveraging executable CPNs for 
the rapid prototyping of the behavior of communicating, concurrent tasks that make 
up the software architecture design of a real-time embedded.  The purpose of the CPN 
prototypes proposed in this approach is to simulate the concurrently executing 
software tasks and to enable analysis and understanding of the concurrent behavior 
during the early design stages. 
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The proposed rapid prototyping approach has four major steps that are: 1) Develop 
the platform independent software architecture 2) Create the platform specific 
software architecture 3) Construct the CPN prototype 4) Execute and analyze the 
CPN prototype.  Each step is described below in more detail. 

2.1   Develop the Platform Independent Software Architecture Model 

The first step in our approach is to develop the platform independent software 
architecture model (PIM).  The purpose of the PIM is to capture the concurrent object 
behavior in the form of concurrent behavioral design patterns (BDP), which in  
subsequent steps will be mapped to CPN templates or components [2].  As discussed 
in previous work, each BDP represents the behavior of concurrent objects together 
with associated message communication constructs, and is depicted on a UML 
concurrent interaction diagram.  Each object is assigned a behavioral role (such as 
I/O, entity, or control) which is given by the COMET concurrent object structuring 
criteria [1] and depicted by a UML stereotype. An example of a behavioral design 
pattern for an asynchronous device input concurrent object is given in Figure 1.  Note 
that these behavioral patterns are commonly seen across the UML community as 
«bondary», «entity», and «control».  With out approach using the COMET method, 
however, additional details are provided for such things as specifying input and 
output, identifying concurrency properties, and defining state-dependent behaviors. 
 

 
Fig. 1. Asynchronous input concurrent object behavioral design pattern 

2.2   Create the Platform Specific Software Architecture Model 

The second step in our rapid prototyping approach is to develop the platform specific 
software architecture model (PSM).  The purpose of the PSM is to capture the 
performance characteristics of how the software architecture will perform if 
implemented on a specific platform.  To enable fast construction of PSMs, the UML 
PIM model should be annotated with platform specific characteristics.  This is quicker 
than creating a separate or external PSM model.   

Platform specific characteristics and values can then be directly added to the UML 
software architecture model using a UML Profile such as the UML Profile for 
Modeling and Analysis of Real-time and Embedded Systems (MARTE) [21].  The 
MARTE Profile provides the ability to capture non-functional performance 
characteristics directly in UML models.  For example, tagging a message in an 
interaction diagram with the <<paStep>> stereotype indicates that it is a step in 
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sequence that uses resources.  The specific platform specific values, such as execution 
time, can be captured in the stereotype’s tags like hostDemand. 

Performance values can be determined from published information about the 
platform, as well as through measurement.  Note that multiple PSMs can be applied to 
a given architecture, supporting prototypes for tradeoff analyses.  These models may 
also be constructed at varying levels of fidelity depending on available information.  
As the development efforts mature, so then can the prototypes of the architecture.  
During this process, collaboration with domain experts and systems engineers is 
highly recommended in order to capture the most realistic and complete set of 
platform specifications.  Section 3 of this paper illustrates both a PIM and PSM for a 
robot controller case study. 

2.3  Construct the CPN Prototype 

After the PSM is developed, an executable CPN prototype from the PSM can be 
systematically constructed.  For each BDP in the PSM (identified by a UML 
stereotype), a self-contained CPN template is required, which by means of its places, 
transitions, and tokens, models a given concurrent behavioral pattern.   A set of 
existing reusable CPN templates can be found in [2].  These templates include: I/O 
(boundary); entity; control; and algorithm.  As an example, Figure 2 is the CPN 
template for an asynchronous device input concurrent object shown in Figure 1. 

 
Fig. 2. Asynchronous input concurrent object CPN template 

 
To instantiate the templates for each specific object, an analyst using our approach 

must provide a certain set of architectural parameters captured by following tagged 
values: 

-Execution Type: passive, asynchronous, or periodic 
-IO: input, output, or I/O 
-Communication Type: synchronous or asynchronous 
-Activation Time: periodic activation rate   
-Processing Time: estimated execution time for one cycle 
-Operation Type: read or write 
-Statechart: for each  «state dependent» object. 
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To illustrate pairing these architectural parameters with BDPs, refer to Figures 1 
and 2.  Figure 1 is an active object, “asyncInputInterface” that implements the I/O 
behavioral pattern as indicated by its stereotype.  Furthermore, tagged types are used 
to capture specific architectural properties of the object, namely that it executes 
asynchronously; handles only input; and has a yet-to-be specified processing time of 
<process time>.  The resulting CPN representation in Figure 2 reflects these 
parameters with the selection of an asynchronous, input-only CPN template and by 
setting the time inscription on the Process Input transition to @+<process time>. 

This <process time> parameter is an estimate of the time required by the object to 
complete one activation cycle.  This information can be obtained directly from UML 
MARTE annotations in the PSM.   For example, process time can be found in the 
<<paStep>> stereotype in the hostDemand tag. 

Since CPN templates provide only the basic behavioral pattern and component 
connections, they must be refined to provide application specific behavior.    

To rapidly support construction of the prototype, we recommend using a reuse 
repository of CPN components.  A CPN component is an elaborated CPN template 
for a commonly used object.  For example, if a company commonly uses a specific 
sensor, a CPN component can be created for the software controller for the particular 
sensor.  This CPN component can then be reused quickly in multiple different 
prototypes.  Reusing CPN components will ultimately reduce the time it takes to 
construct the CPN prototypes.  This is critical in rapid prototyping environments. 

After all the BDPs in the PSM have an associated CPN templates or CPN 
components, the CPN templates and components are then interconnected via 
connector templates to create a prototype of the software architecture.  The CPN 
prototype is then executed using a CPN tool, thereby allowing the designer to analyze 
both the concurrent behavior of the CPN prototype, with a given external workload 
applied to it. 

3. Case Study:  Robot Control 

We illustrate our rapid prototyping approach using a robot controller case study based 
on the Lego® Robotics Invention System™ (RIS), commonly known as 
Mindstorms™ [16].  The RIS platform was chosen based on the embedded nature of 
the platform with easily reconfigurable sensors and actuators [18]. 

The robot controller case study is an autonomous rover employing an infrared light 
sensor and two motors (actuators).  The goal of the rover is to search an area for 
colored discs, while staying within the course boundary and avoiding obstacles.  In 
this case study, the light sensor is the sole input sensor, responsible for detecting 
boundary markings, obstacle markings, and discs according to different color 
schemes.  This case study was used as a term project for a graduate course on real-
time embedded software engineering at George Mason University. 

MoDELS 2011 ACES-MB Workshop Proceedings

Wellington, New Zealand, October 18, 2011 89



3.1   Robot Controller PIM 

The architecture model for the autonomous rover is illustrated in Figure 3.  In this 
particular scenario, we are interested in navigating the course; responding to changes 
from the light sensor; and taking the appropriate action based on the detection event.  

 
Fig. 3. Robot controller PIM interaction diagram 
 

In this design, there are three active, concurrently executing objects (detect, rover, 
and nav) and one passive object (map).  External I/O objects (depicted as actors in 
Figure 3) are also shown for receiving light sensor input and for modeling output to 
the two motors.  Following object structuring guidelines from the COMET method, 
each of the objects in the system is stereotyped according to the hierarchy previously 
shown in Figure 1.  These stereotypes indicate the behavioral design pattern (BDP) 
implemented by each object. Further details about the behavioral properties are 
augmented with the architectural parameters as follows: 

The detect, rover, and nav objects all operate asynchronously and have an 
Execution Type tagged value of “async”.  As the input interface for the light sensor, 
the detect object has an IO tagged value of “input”.  All messages between the active 
objects have a Communication Type tagged value of “synchronous”, indicating 
synchronous, buffered communication.  This particular design decision was made to 
decrease the risk of missing a boundary or obstacle detection event.  Other design 
choices for this system would be to employ FIFO or priority queuing.  The affects of 
these design decisions could also be analyzed using the techniques presented in this 
paper, but are not shown due to space limitations. Finally, the update() operation on 
the map object has an Operation Type tagged value of “writer”. 

Note that values for the Processing Time parameters are left unspecified at this 
point as we will set these parameters based on the PSM in the next section. 
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3.2 Robot Controller PSM 

The next step in our approach is to create a platform specific model for the target 
platform.  This is shown in Figure 4 using historical data and hardware specifications 
for the RIS system  [18-20]. 

In this model, our rover is identified as the single node in the system and is based 
on the Robot Command eXplorer (RCX) platform.  The RCX is the central 
component to any RIS system and houses the Hitachi H8 microcontroller with a 16 
MHz CPU.  Paired with the leJOS Java environment the execution speed of this CPU 
is documented to be 1750 operations per second (OPS).  
 

 
Fig. 4. Robot controller PSM interaction diagram 

 
Additionally, there are 16 KB of ROM and 28 KB of RAM available on the RCX 

of which, 17.5 KB of RAM are used by the leJOS operating system.  The system 
clock resolution on the RCX, at 1ms, is longer than the time required for observed 
context switching between concurrent threads, thus the leJOS.overhead is set to zero.  
In our system, there are three physical devices attached:  one light sensor at port S2 
and two motors at ports A and C.  Independent control of these motors is used to steer 
the rover; turning is achieved by rotating the left (Motor A) and right (Motor C) 
motors in opposite directions.  Using historical data, the detection latency of the light 
sensor was set at 10.3 ms, while the output latency of the motors was set at 1 ms. 

It would also be useful to combine the information from the PSM with historical 
data on software size.  This type of information is commonly maintained by software 
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development organizations and, in our case, we will rely on average software sizes 
across the set of student projects.  From this data, we discover the following: 

«IO» objects average 19 instructions (in Java bytecode) per execution cycle and 
have an average size of 1,182 bytes. 

«coordinator» objects average 27 instructions and 2,722 bytes. 
«algorithm» objects average 89 instructions and 1,015 bytes per algorithm. 
«entity» objects average 1,400 bytes. 

Now, using the combined historical sizing data and information from the rover, we 
can augment the PSM with this platform specific information.  Prior to the CPU being 
available for performance measurement, an initial estimate of the execution time is 
computed by multiplying the estimated average number of instructions by the 
computational speed of the CPU (1750 OPS in our PSM example).  These estimates 
are captured in the hostDemand tag. 

3.3 CPN Prototype 

Using the above PSM design information, we can now begin to construct a Colored 
Petri Net (CPN) prototype of the software architecture [2]. Using our approach, we 
start with a context level model, capturing the system as a black box (transition) and 
external sensors and actuators represented as places.  This model, allowing us to focus 
on the highest level of abstraction with observed inputs and outputs is shown in 
Figure 5. 
 

 
Fig. 5. Robot controller context level CPN 
 

Moving forward, our second step is to decompose the RoverBot system-level 
transition into a layer of abstraction representing the concurrent object architecture.  
This architecture level model is shown in Figure 6.  At this level, each of the active 
objects from is represented as its own transition (box) in the CPN prototype.  Each of 
these will be further decomposed to implement the specific CPN template matching 
the objects behavioral design pattern or a CPN component if one exists for the object.  
We have also included the single «entity» object containing map data and it is 
represented by a place for the map data to be stored along with a transition and two 
places representing the behavior for calling the update() operation.  Finally, as all 
message communication between active objects in the RoverBot system is 
synchronous, there is a CPN place modeling a buffer for the synchronous 
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communication between detect and rover and between rover and nav. Notice that our 
external input and output places have also been carried down to this level as well.  

 
Fig. 6. Robot controller CPN architecture 
 

Once an architecture-level model is established, each of the transitions 
representing an active object is then decomposed by applying the CPN template 
associated with the behavioral design pattern of that object.  For the asynchronous, 
input-only «IO» object, “detect”, this CPN object-level model is shown in Figure 7.  
Here, the CPN template has been inserted and instantiated specifically for the detect 
object by setting the object ID to “1” as seen by the number appended to place and 
transition names.  The specific control token, C1 has also been added as has the 
function for processing detections, “detection (sensorReading)”.  To maintain 
consistency, the main transition of this template, Pin1, has also been connected to the 
sensor input place and to the roverBuf message buffer place. 

Now, using the combined historical sizing data and information from the rover 
PSM, we can augment the architectural parameters within the CPN prototype to 
obtain further insights as to the behavioral and performance aspects that should be 
expected when matching the original platform independent design model with the 
actual platform characteristics of the target implementation. 
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Fig. 7. CPN template for the “detect” object  
 

To begin, we add a place, RAM, to our CPN prototype.  This will model the 
available memory resources measured in bytes.  The initial token value for the RAM 
place is calculated by subtracting the leJOS memory overhead along with the average 
RAM usage for the objects in our architecture from the total available RAM specified 
in the PSM.   

Table 1.  Calculating Memory Availability 

Source Memory (Bytes) 
ram.sizeKB 28,672 
lejos.kbMemOverhead 17,920 
«IO» detect 1,182 
«coordinator» rover 2,722 
«algorithm» nav 2,030 
«entity» map 1,400 

Available RAM: 3,418 
 
Once the rover system begins execution, the primary consumption of memory 

occurs when points are added to the map object.  For each point added to the map, 16 
bytes are used for x and y coordinates; detection event; and timestamp.  To prototype 
this memory consumption, the RAM place from the CPN context level model is 
attached to the Update transition of the map object’s CPN representation on the 
architecture level model.  This is shown in Figure 8.  Using this approach, 16 bytes 
are subtracted from the available RAM each time the update operation is called.  If 
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the system reaches a point where less than 16 bytes are available, then the CPN model 
will be suspended. 

Next, the <process time> parameter will be updated for each active object 
template.  This information can be obtained from hostDemand tag in the PSM’s 
<<psStep>> stereotype.  Additionally, each «IO» object template will add the 
detection or output latency to the <process time>.  For example, the detect object, 
responsible for interfacing with the light sensor, would have a basic <process time> of 
10.8ms.  An additional 10.3ms are then added to account for the value of 
lightSensor.detectionLatency from the PSM, resulting in a total time delay 21ms.  
Once time values have been allocated to all objects, we can move forward with 
analyzing the prototype of the architecture as described in the next section. 
These initial estimates can eventually be replaced with higher fidelity data as it 
becomes available, allowing an engineer to refine the behavioral analysis as desired. 
 

 
Fig. 8. Consumption of RAM by “map” object 

3.4 Analyzing the Prototype 

Recall from the sequence diagram of that the primary purpose of the autonomous 
rover system is to navigate an area, mapping objects discovered by the light sensor 
and taking evasive action when the light sensor detects obstacles or course 
boundaries.  To begin analyzing this behavior with the corresponding CPN prototype, 
we use a test driver to provide simulated input events at random intervals.  One of the 
first things we want to discover is how quickly the architecture responds to the 
detection of an obstacle or boundary.  This can be analyzed from the context-level 
model by taking the difference in time stamps from the time an obstacle or boundary 
event arrives on the light sensor place to the time that a command is issued to the 
motors.  For example, if the first obstacle was detected at time 6459 (all time is in 
milliseconds in this model).  From the timestamps on the Motor places, we can see 
that from the time an input arrives to the time the system responded, there was an 
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elapsed time of 31ms.  This information could then be used, along with the speed of 
the rover, to determine if the reaction time is sufficient using this software 
architecture and this particular platform. 

Other forms of analysis could include observing the memory usage over time or 
investigating the interaction among the concurrent objects as the simulated input rate 
varies.  Analysis of physical architectural variations such as different light sensors or 
motors could also be conducted by applying different PSMs.  Analysis of software 
architecture variations such as the use of different message communication 
mechanisms (e.g. FIFO or priority queuing) between the active objects could also be 
explored.  These analyses are not shown due to space limitations in this paper. 

3.5 Comparing Prototype with Observations 

To validate our prototype, the rover design presented above was implemented in 
leJOS and the code was instrumented to capture timestamps.  Execution of the rover 
when presented with boundaries or obstacles initially identified actual response times 
of 25-27ms from the point that the light sensor was presented with the boundary or 
obstacle to the point that the first motor command was output in response to the 
detection.  This is slightly under the 31ms estimated by our analysis in the previous 
section.  Interestingly, though, as we conducted tests with the rover over time, we 
observed response times increasing as battery power decreased.  The above 
measurements of 25-27ms were observed with fully charged (9.0V) batteries. 
However, response times of up to 33ms were observed as the battery power was 
depleted to 8.2V.  These results are summarized in Table 2 below.  Replacing the 
depleted batteries with a fully charged set returned the response times to the initially 
observed 25-27ms.  Thus, we believe that future research should include a power 
source with the embedded platform specific model. 

Table 2.  Response Time Results 

Response Time in Milliseconds Team 
Run 1 Run 2 Run 3 Run 4 

1 27 27 29 33 
2 25 26 27 27 
3 26 25 26 28 
4 26 27 29 32 
5 25 25 26 26 

 

4 Conclusions and Future Research 

In this paper, we have presented an approach to combine information from platform-
independent and platform-specific models to construct prototypes of software 
architectures for embedded systems.  This approach allows an engineer / analyst to 
examine behavioral and performance properties of a software architecture design 
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paired with a candidate implementation architecture.  The underlying CPN prototype 
is particularly useful in modeling concurrent object architectures in event-driven, real-
time embedded systems.  Applying the behavioral design patterns in the UML-based 
design along with corresponding CPN templates and components, the results from the 
analyses can be directly mapped back to the original design artifacts.  Furthermore, by 
employing architectural parameters such as processing time, the CPN analysis model 
can be rapidly modified to account for different candidate architectures. 

There are other tools available for constructing executable models of software 
designs such as the Rhapsody tool by IBM® [24].  While these tools are certainly 
useful, we feel there are certain advantages to our CPN approach.  Modeling and 
prototyping of the architecture design is possible without depending on a particular 
UML modeling tool or design method – we only require that the basic behavioral 
patterns be identified.  In fact, while we illustrate this approach with the UML, there 
is really no need to enforce the use of UML as long as the patterns can be identified 
for individual software abstractions.  One such study applying this approach to a non-
UML design is currently underway and will be published in the future.  Furthermore, 
our CPN approach is more tolerant to varying levels of fidelity than other executable 
modeling tools.  Using Rhapsody as an example again, each object must have detailed 
specifications (typically in the form of a state machine) in order for the model to be 
executed.  With the CPN approach, even the most basic architecture designs can be 
simulated to show concurrent interactions, with increasing levels of fidelity as more 
specifications are added. 

Future research in this area must continue to examine properties that should be 
captured and the most effective ways in which to capture them.  In comparing our 
observed results to our analyses, the inclusion of a power model would obviously be 
desired in an embedded system.  Additionally, future work should consider the ability 
to model distributed software designs configured to execute on multiple distributed 
embedded nodes and the communication between them.   Finally, as mentioned 
above, work is also underway to provide a more generic approach to the executable 
CPN approach that allows for flexibility in the origin of the software design, whether 
that is captured in UML or other modeling languages. 
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