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Preface

Ubiquitous Data Mining is a recent research topic that uses data mining tech-
niques to extract useful knowledge from data continuously generated from devices
with limited computational resources that move in time and space. The goal of this
workshop is to convene researchers (from both academia and industry) who deal
with machine learning and data mining techniques for Ubiquitous Data Mining. We
strongly welcome papers describing real-world applications of Ubiquitous Data Min-
ing. This is the second workshop in the topic held in conjunction with ECAI. We
received 15 submissions that were evaluated by 2 members of the Program Com-
mittee. The PC recommended accepting 9 papers. We have a diverse set of papers
focusing from applications in medical domains, activity recognition, predicting taxis
demand, to more theoretical aspects of computing statistics in data streams. All
papers deal with different aspects of evolving data and/or distributed data.

We would like to thank all people that make this event possible. First of all,
we thank authors that submit their work and the Program Committee for the work
in reviewing the papers, and proposing suggestions to improve the works. A final
Thanks to the ECAI Workshop Chairs for all the support.

João Gama, Manuel F. Santos, Nuno Marques,
Paulo Cortez and Pedro P. Rodrigues
Program Chairs

Copyright c© 2013 for the individual papers by the papers’ authors. Copying permitted for
private and academic purposes. This volume is published and copyrighted by its editors.
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• André Carvalho, University of São Paulo (USP), Brazil

• Antoine Cornuéjols, LRI, France

• Carlos A. Ferreira, Institute of Engineering of Porto, Portugal

• Eduardo Spinosa, University of São Paulo (USP), Brazil

• Elaine Faria, University of Uberlândia (UFU), Brazil

• Elaine Sousa, University of São Paulo, Brazil

• Elena Ikonomovska, University St. Cyril & Methodius, Macedonia

• Ernestina Menasalvas, Technical University of Madrid, Spain

• Florent Masseglia, INRIA, France

• Geoffrey Holmes, University of Waikato, New Zealand

• Hadi Tork, LIAAD-INESC TEC, Portugal
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LIFT - Local Inference in Massively Distributed

Systems

Michael May

Fraunhofer Institute for Intelligent Analysis and Information
Systems (IAIS), Sankt Augustin, Germany

michael.may@iais.fraunhofer.de

Abstract

As the scale of todays networked techno-social systems continues to
increase, the analysis of their global phenomena becomes increasingly diffi-
cult, due to the continuous production of streams of data scattered among
distributed, possibly resource-constrained nodes, and requiring reliable
resolution in (near) real-time. We will present work from an on-going Eu-
ropean funded research project: LIFT - Local Inference in Massively Dis-
tributed Systems. On the theoretical side, the project investigates novel
approaches for realising sophisticated, large-scale distributed data-stream
analysis systems, relying on processing local data in situ. A key insight is
that, for a wide range of distributed data analysis tasks, we can employ
novel geometric techniques for intelligently decomposing the monitoring
of complex holistic conditions and functions into safe, local constraints
that can be tracked independently at each node (without communica-
tion), while guaranteeing correctness for the global-monitoring operation.
An application area where this leads to very interesting applications is the
real-time analysis of human mobility and traffic phenomena. In this case,
privacy concerns add another dimension to the problem. We present a
number of case studies how the LIFT-approach can be used for efficient,
privacy-aware analysis of human mobility.
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An Efficient Spatio-Temporal Mining Approach

to Really Know Who Travels with Whom!

Pascal Poncelet

LGI2P Research Center, Nimes, France
Pascal.Poncelet@ema.fr

Abstract

Recent improvements in positioning technology has led to a much
wider availability of massive moving object data. A crucial task is to
find the moving objects that travel together. Usually, they are called
spatio-temporal patterns. Due to the emergence of many different kinds
of spatio-temporal patterns in recent years, different approaches have been
proposed to extract them. However, each approach only focuses on mining
a specific kind of pattern. In addition to the fact that it is a painstaking
task due to the large number of algorithms used to mine and manage pat-
terns, it is also time consuming. Additionally, we have to execute these
algorithms again whenever new data are added to the existing database.
To address these issues, in this talk we first redefine spatio-temporal pat-
terns in the itemset context. Secondly, we propose a unifying approach,
named GeT Move, using a frequent closed itemset-based spatio-temporal
pattern-mining algorithm to mine and manage different spatio-temporal
patterns. GeT Move is proposed in two versions which are GeT Move and
Incremental GeT Move. Experiments performed on real and synthetic
datasets and the experimental results will be also presented to show that
our approaches are very effective and outperform existing algorithms in
terms of efficiency. Finally we will present some future work.
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Cooperative Kernel-Based Forecasting in Decentralized
Multi-Agent Systems for Urban Traffic Networks

Jelena Fiosina and Maksims Fiosins1

Abstract. The distributed and often decentralised nature of com-
plex stochastic traffic systems having a large amount of distributed
data can be represented well by multi-agent architecture. Traditional
centralized data mining methods are often very expensive or not fea-
sible because of transmission limitations that lead to the need of the
development of distributed or even decentralized data mining meth-
ods including distributed parameter estimation and forecasting. We
consider a system, where drivers are modelled as autonomous agents.
We assume that agents possess an intellectual module for data pro-
cessing and decision making. All such devices use a local kernel-
based regression model for travel time estimation and prediction. In
this framework, the vehicles in a traffic network collaborate to opti-
mally fit a prediction function to each of their local measurements.
Rather than transmitting all data to one another or a central node in
a centralized approach, the vehicles carry out a part of the computa-
tions locally by transmitting only limited amount of data. This lim-
ited transmission helps the agent that experiences difficulties with its
current predictions. We demonstrate the efficiency of our approach
with case studies with the analysis of real data from the urban traffic
domain.

1 INTRODUCTION

Multi-agent systems (MAS) often deal with complex applications,
such as sensors, traffic, or logistics networks, and they offer a suit-
able architecture for distributed problem solving. In such applica-
tions, the individual and collective behaviours of the agents depend
on the observed data from distributed sources. In a typical distributed
environment, analysing distributed data is a non-trivial problem be-
cause of several constraints such as limited bandwidth (in wireless
networks), privacy-sensitive data, distributed computing nodes, etc.
The distributed data processing and mining (DDPM) field deals with
these challenges by analysing distributed data and offers many al-
gorithmic solutions for data analysis, processing, and mining using
different tools in a fundamentally distributed manner that pays care-
ful attention to the resource constraints [3].

Traditional centralized data processing and mining typically re-
quires central aggregation of distributed data, which may not always
be feasible because of the limited network bandwidth, security con-
cerns, scalability problems, and other practical issues. DDPM car-
ries out communication and computation by analyzing data in a dis-
tributed fashion [10]. The DDPM technology offers more efficient
solutions in such applications.

In this study we focus on the urban traffic domain, where many
traffic characteristics such as travel time, travel speed, congestion

1 Institure of Informatics, Clausthal University of Technology, Germany
email:{jelena.fiosina, maksims.fiosins}@gmail.com

probability, etc. can be evaluated by autonomous agents-vehicles in
a distributed manner. In this paper, we present a general distributed
regression forecasting algorithm and illustrate its efficiency in fore-
casting travel time.

Numerous data processing and mining techniques were suggested
for forecasting travel time in a centralized and distributed manner.
Statistical methods, such as regression and time series, and artificial
intelligence methods, such as neural networks, are successfully im-
plemented for similar problems. However, travel time is affected by a
range of different factors. Thus, accurate prediction of travel time is
difficult and needs considerable amount of traffic data. Understand-
ing the factors affecting travel time is essential for improving predic-
tion accuracy [13].

We focus on non-parametric, computationally intensive estima-
tion, i.e. Kernel-based estimation, which is a promising technique
for solving many statistical problems, including parameter estima-
tion. In our paper, we suggest a general distributed kernel-based algo-
rithm and use it for forecasting travel time using real-world data from
southern Hanover. We assume that each agent autonomously esti-
mates its kernel-based regression function, whose additive nature fits
very well with streaming real-time data. When an agent is not able to
estimate the travel time because of lack of data, i.e., when it has no
data near the point of interest (because the kernel-based estimation
uses approximations), it cooperates with other agents. An algorithm
for multi-agent cooperative learning based on based on transmission
of the required data as a reply to the request of the agent experi-
encing difficulties was suggested. After obtaining the necessary data
from other agents, the agent can forecast travel-time autonomously.

The travel-time, estimated in the DDPM stage, can serve as an in-
put for the next stage of distributed decision making of the intelligent
agents [5].

This study contributes in the following ways: It suggests (a) a de-
centralized kernel-based regression forecasting approach, (b) a re-
gression model with a structure that facilitates travel-time forecast-
ing; and it improves the application efficiency of the proposed ap-
proach for the current real-world urban traffic data.

The remainder of this paper is organized as follows. Section 2 de-
scribes the related previous work in the DDPM field for MAS, kernel
density estimation, and travel-time prediction. Section 3 describes
the current problem more formally. Section 4 presents the multivari-
ate kernel-based regression model adopted for streaming data. Sec-
tion 5 describes the suggested cooperative learning algorithm for op-
timal prediction in a distributed MAS architecture. Section 6 presents
a case study and the final section contains the conclusions.

3



2 RELATED PREVIOUS WORK

2.1 Distributed Data Mining in Multi-agent
Systems

A strong motivation for implementing DDPM for MAS is given by
Da Silva et al. in [3], where authors argue that DDPM in MAS deals
with pro-active and autonomous agents that perceive their environ-
ment, dynamically reason out actions on the basis of the environ-
ment, and interact with each other. In many complex domains, the
knowledge of agents is a result of the outcome of empirical data
analysis in addition to the pre-existing domain knowledge. DDPM
of agents often involves detecting hidden patterns, constructing pre-
dictive and clustering models, identifying outliers, etc. In MAS,
this knowledge is usually collective. This collective ’intelligence’
of MAS must be developed by distributed domain knowledge and
analysis of the distributed data observed by different agents. Such
distributed data analysis may be a non-trivial problem when the un-
derlying task is not completely decomposable and computational re-
sources are constrained by several factors such as limited power sup-
ply, poor bandwidth connection, privacy-sensitive multi-party data.

Klusch at al. [11] concludes that autonomous data mining agents,
as a special type of information agents, may perform various kinds
of mining operations on behalf of their user(s) or in collaboration
with other agents. Systems of cooperative information agents for data
mining in distributed, heterogeneous, or homogeneous, and massive
data environments appear to be quite a natural progression for the
current systems to be realized in the near future.

A common feature of all approaches is that they aim at integrat-
ing the knowledge that is extracted from data at different geograph-
ically distributed network sites with minimum network communica-
tion and maximum local computations. Local computation is carried
out on each site, and either a central site communicates with each
distributed site to compute the global models or a peer-to-peer archi-
tecture is used. In the case of the peer-to-peer architecture, individual
nodes might communicate with a resource-rich centralized node, but
they perform most tasks by communicating with neighbouring nodes
through message passing over an asynchronous network [3].

A distributed system should have the following features for the
efficient implementation of DDPM: the system consists of multiple
independent data sources, which communicate only through message
passing; communication between peers is expensive; peers have re-
source constraints (e. g. battery power) and privacy concerns [3].

Typically, communication involves bottlenecks. Since communi-
cation is assumed to be carried out exclusively by message passing,
the primary goal of several DDPM methods, as mentioned in the liter-
ature, is to minimize the number of messages sent. Building a mono-
lithic database in order to perform non-distributed data processing
and mining may be infeasible or simply impossible in many appli-
cations. The costs of transferring large blocks of data may be very
expensive and result in very inefficient implementations [10].

Moreover, sensors must process continuous (possibly fast) streams
of data. The resource-constrained distributed environments of sensor
networks and the need for a collaborative approach to solve many
problems in this domain make MAS architecture an ideal candidate
for application development.

In our study we deal with homogeneous data. However, a promis-
ing approach to agent-based parameter estimation for partially het-
erogeneous data in sensor networks was suggested in [7]. Another
decentralized approach for homogeneous data was suggested in [18]
to estimate the parameters of a wireless network by using a paramet-
ric linear model and stochastic approximations.

2.2 Travel Time Prediction Models

Continuous traffic jams indicate that the maximum capacity of a road
network is met or even exceeded. In such a situation, the modelling
and forecasting of traffic flow is one of the important techniques that
need to be developed [1]. Nowadays, knowledge about travel time
plays an important role in transportation and logistics, and it can be
applied in various fields and purposes. From travellers’ viewpoints,
the knowledge about travel time helps to reduce the travel time and
improves reliability through better selection of travel routes. In lo-
gistics, accurate travel time estimation could help reduce transport
delivery costs and increase the service quality of commercial deliv-
ery by delivering goods within the required time window by avoiding
congested sections. For traffic managers, travel time is an important
index for traffic system operation efficiency [13].

There are several studies in which a centralized approach is used to
predict the travel time. The approach was used in various intelligent
transport systems, such as in-vehicle route guidance and advanced
traffic management systems. A good overview is given in [13]. To
make the approach effective, agents should cooperate with each other
to achieve their common goal via the so called gossiping scenarios.
The estimation of the actual travelling time using vehicle-to-vehicle
communication without MAS architecture was described in [14].

On the other hand, a multi-agent architecture is better suited for
distributed traffic networks, which are complex stochastic systems.
Further, by using centralized approaches the system cannot adapt
quickly to situations in real time, and it is very difficult to trans-
mit a large amount of information over the network. In centralized
approaches, it is difficult or simply physically impossible to store
and process large data sets in one location. In addition, it is known
from practice that the most drivers rely mostly on their own expe-
rience; they use their historical data to forecast the travel time [5].
Thus, decentralized multi-agent systems are are fundamentally im-
portant for the representation of these networks [1]. We model our
system with autonomous agents to allow vehicles to make decisions
autonomously using not only the centrally processed available infor-
mation, but also their historical data.

Traffic information generally goes through the following three
stages: data collection and cleansing, data fusion and integration, and
data distribution [12]. The system presented in [12] consists of three
components, namely a Smart Traffic Agent, the Real-time Traffic In-
formation Exchange Protocol and a centralized Traffic Information
Centre that acts as the backend. A similar architecture is used in
this study, but the prediction module, incorporated into Start Traf-
fic Agent (vehicle agent), is different. In our study we do not focus
on the transmission protocol describing only the information, which
should be sent from one node to another, without the descriptions of
protocol packets. The centralized Traffic Information Centre in our
model is used only for storing system information.

The decentralized MAS approach for urban traffic network was
considered in [2] also, where the authors forecast the traversal time
for each link of the network separately. Two types of agents were
used for vehicles and links, and a neural network was used as the
prediction model.

For travel time forecasting different regression models can be ap-
plied. Linear multivariate regression model for decentralized urban
traffic network was proposed in [4]. This regression model is well-
studied, is parametric and allows estimation of each variables contri-
bution. However is not sufficiently effective in the case of non-linear
systems. Alternatively non-parametric kernel-based regression mod-
els can be applied. These models can be effectively used for any types
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of systems, however are relatively new and not well-studied yet. The
efficiency of non-parametric kernel-based regression approach for
traffic flow forecasting in comparison to parametric approach was
made in [17]. In this study we apply non-parametric kernel regres-
sion for the similar traffic system as in [4] in order to increase the
prediction quality.

2.3 Kernel Density Estimation

Kernel density estimation is a non-parametric approach for estimat-
ing the probability density function of a random variable. Kernel den-
sity estimation is a fundamental data-smoothing technique where in-
ferences about the population are made on the basis of a finite data
sample. A kernel is a weighting function used in non-parametric es-
timation techniques.

Let X1, X2, . . . , Xn be an iid sample drawn from some distribu-
tion with an unknown densityf . We attempt to estimate the shape of
f , whose kernel density estimator is

f̂h(x) =
1

nh

n∑

i=1

K
(

x − Xi

h

)
, (1)

where kernelK(•) is a non-negative real-valued integrable function
satisfying the following two requirements:

∫ ∞
−∞ K(u)du = 1 and

K(−u) = K(u) for all values ofu; h > 0 is a smoothing parame-
ter called bandwidth. The first requirement toK(•) ensures that the
kernel density estimator is a probability density function. The second
requirement toK(•) ensures that the average of the corresponding
distribution is equal to that of the sample used [8]. Different kernel
functions are available: Uniform, Epanechnikov, Gausian, etc. They
differ in the manner in which they take into account the vicinity ob-
servations to estimate the function from the given variables.

A very suitable property of the kernel function is its additive na-
ture. This property makes the kernel function easy to use for stream-
ing and distributed data [8], [3], [7]. In [11], the distributed kernel-
based clustering algorithm was suggested on the basis of the same
property. In this study, kernel density is used for kernel regressionto
estimate the conditional expectation of a random variable.

3 PROBLEM FORMULATION

We consider a traffic network with several vehicles, represented as
autonomous agents, which predict their travel time on the basis of
their current observations and history. Each agent estimates locally
the parameters of the same traffic network. In order to make a fore-
cast, each agent constructs a regression model, which explains the
manner in which different explanatory variables (factors) influence
the travel time. A detailed overview of such factors is provided
in [13]. The following information is important for predicting the
travel time [15]: average speed before the current segment, number
of stops, number of left turns, number of traffic light, average travel
time estimated by Traffic Management Centres (TMC). We should
also take into account the possibility of an accident, network over-
load (rush hour) and the weather conditions.

Let us consider a vehicle, whose goal is to drive through the defi-
nite road segment under specific environment conditions (day, time,
city district, weather, etc.). Let us suppose that it has no or little ex-
perience of driving in such conditions. For accurate travel time esti-
mation, it contacts other traffic participants, which share their expe-
rience in the requested point.

In this step, the agent that experiences difficulties with a forecast
sends its requested data point to other traffic participants in the trans-
mission radius. The other agents try to make a forecast themselves.
In the case of a successful forecast, the agents share their experience
by sending their observations that are nearest to the requested point.
After receiving the data from the other agents, the agent combines
the obtained results, increases its experience, and makes a forecast
autonomously.

In short, decentralized travel-time prediction consists of three
steps: 1) local prediction; 2) in the case of unsuccessful prediction:
selection of agents for experience sharing and sending them the re-
quested data point; 3) aggregation of the answers and prediction.

4 LOCAL PARAMETER ESTIMATION

The non-parametric approach to estimating a regression curve has
four main purposes. First, it provides a versatile method for exploring
a general relationship between two variables. Second, it can predict
observations yet to be made without reference to a fixed parametric
model. Third, it provides a tool for finding spurious observations by
studying the influence of isolated points. Fourth, it constitutes the
flexible method of substitution or interpolating between adjacentX-
values for missing values [8].

Let us consider a non-parametric regression model [9] with a de-
pendent variableY and a vector ofd regressorsX

Y = m(x) + ǫ, (2)

whereǫ is the disturbance term such thatE(ǫ|X = x) = 0 and
V ar(ǫ|X = x) = σ2(x), andm(x) = E(Y |X = x). Further,
let (Xi, Yi)

n
i=1 be the observations sampled from the distribution of

(X, Y ). Then the Nadaraya-Watson kernel estimator is

mn(x) =

∑n

i=1
K

(
x−Xi

h

)
Yi∑n

i=1
K

(
x−Xi

h

) =
pn(x)

qn(x)
, (3)

whereK(•) is the kernel function ofRd andh is the bandwidth. Ker-
nel functions satisfy the restrictions from (1). In our case we have
a multi-dimensional kernel functionK(u) = K(u1, u2, . . . , ud),
that can be easily presented with univariate kernel functions as:
K(u) = K(u1) · K(u2) · . . . · K(ud). We used the Gaussian kernel
in our experiments.

Network packets are streaming data. Standard statistical and data
mining methods deal with a fixed dataset. There is a fixed sizen for
dataset and algorithms are chosen as a function ofn. In streaming
data there is non: data are continually captured and must be pro-
cessed as they arrive. It is important to develop algorithms that work
with non-stationary datasets, handle the streaming data directly, and
update their models on the fly [6].

This requires recursive windowing. The kernel density estimator
has a simple recursive windowing method that allows the recursive
estimation using the kernel density estimator:

mn(x) =
pn(x)

qn(x)
=

pn−1(x) + K
(
x−Xn

h

)
Yn

qn−1(x) + K
(
x−Xn

h

) . (4)

5 DECENTRALISED MULTI-AGENT
COOPERATIVE LEARNING ALGORITHM

In this section, we describe the cooperation for sharing the predic-
tion experience among the agents in a network. While working with
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streaming data, one should take into account two main facts. The
nodes should coordinate their prediction experience over some pre-
vious sampling period and adapt quickly to the changes in the stream-
ing data, without waiting for the next coordination action.

Let us first discuss the cooperation technique. We introduce the
following definitions.

Let L = {Lj | 1 ≤ j ≤ p} be a group ofp agents. Each agent
Lj ∈ L has a local datasetDj = {(Xj

c, Y
j

c )|c = 1. . . . , N j}, where
Xj

c is ad-dimensional vector. In order to underline the dependence
of the prediction function (3) from the local dataset of agentLj , we
denote the prediction function bym[Dj ](x).

Consider a case when some agentLi is not able to forecast for
somed-dimensional future data pointXi

new because it does not have
sufficient data in the neighbourhood ofXi

new. In this case, it sends
a request to other traffic participants in its transmission radius by
sending the data pointXi

new to them. Each agentLj that has received
the request tries to predictm[Dj ](Xi

new). If it is successful, it replies
to agentLi by sending its best data representativesD̂(j,i) from the
neighbourhood of the requested pointXi

new. Let us defineGi ⊂ L,
a group of agents, which are able to reply to agentLi by sending the
requested data.

To select the best data representatives, each agentLj makes a
ranking among its datasetDj . It can be seen from (3) that eachY j

c

is taken with the weightwj
c with respect toXi

new, where

wj
c =

K
(

Xi
new−X

j
c

h

)

∑n

l=1
K

(
Xi

new−X
j
l

h

) .

The observations with maximum weightswj
c are the best candidates

for sharing the experience.
All the dataD̂(j,i), Lj ∈ Gi received by agentLi should be ver-

ified, and duplicated data should be removed. We denote the new
dataset of agentLi asDi

new =
⋃

Lj∈Gi D̂(j,i). Then, the kernel

function of agentLi is updated taking into account the additive na-
ture of this function:

m[Di
new](x) =

∑

Lj∈Gi

m[D̂(j,i)](x) + m[Di](x). (5)

Finally, agent Li can autonomously make its forecast as
m[Di

new](Xi
new) for Xi

new.

6 CASE STUDIES

We simulated a traffic network in the southern part of Hanover (Ger-
many). The network contains three parallel and five perpendicular
streets, creating fifteen intersections with a flow of approximately
5000 vehicles per hour.

The vehicles solve a travel time prediction problem. They receive
information about the centrally estimated system variables (such as
average speed, number of stops, congestion level, etc.) for this city
district from TMC, combine it with their historical information, and
make adjustments according to the information of other participants
using the presented cooperative-learning algorithm. In this case, the
regression analysis is an essential part of the local time prediction
process. We consider the local kernel based regression model (3)and
implement the cooperative learning algorithm (5). The factors are
listed in Table 1. The selection and significance of these variables
was considered in [4].

We simulated 20 agents having their initial experience represented
by a dataset of size 20 till each agent made 100 predictions, thus
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Figure 1. Average number of communications over time for differenth

making their common experience equal to 2400. We assumed the
maximal number of transmitted observations from one agent equals
2.

Table 1. System factors influencing the travel time

Variable Description

Y travel time (min);
X1 length of the route (km);
X2 average speed in the system (km/h);
X3 average number of stops in the system (units/min);
X4 congestion level of the flow (Veh/h);
X5 number of traffic lights in the route (units);
X6 number of left turns in the route (units).

During the simulation, to predict more accurately, the agents used
the presented cooperative learning algorithm that supported the com-
munication between agents with the objective of improving the pre-
diction quality. The necessary number of communications depends
on the value of the smoothing parameterh. The average number
of necessary communications is given in Figure 1. We can see the
manner in which the number of communications decreased with the
learning time. We variedh and obtained the relation between the
communication numbers andh as a curve. The prediction ability of
one of the agents is presented at Figure 2. Here, we can also see the
relative prediction error, which decreases with time. The predictions
that used communication between agents are denoted by solid tri-
angles, and the number of such predictions also decreases with the
time.

The goodness of fit of the system was estimated using a cross-
validation technique. We assume that each agent has its own training
set, but it uses all observations of other agents as a test set, so we
use 20-fold cross-validation. To estimate the goodness of fit, we used
analysis of variance and generalized coefficient of determinationR2

that provides an accurate measure of the effectiveness of the predic-
tion of future outcomes by using the non-parametric model [16]. The
calculatedR2 values and the corresponding number of the observa-
tions that were not predicted (because cooperation during testing was
not allowed) depending onh are listed in Table 2. From Figure 3 we
can also see howR2 is distributed among the system agents. The
results suggest that we should find some trade-off between system
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Figure 3. Distribution of goodness of fit measureR2 using
cross-validation for the whole system,h = 2

accuracy (presented byR2) and the number of necessary communi-
cations (presented by the percentage of not predicted observations),
which depend onh. The point of trade-off should depend on the com-
munication and accuracy costs.

Table 2. R2 goodness of fit measure using cross-validation for the whole
system for differenth

Characteristic of System h=2 h=3 h=5 h=8

System averageR2 0.86 0.84 0.83 0.82
Average % of not predicted observations 3 1 0.5 0.1

A linear regression model [4] applied to the same data gives lower
average goodness of fitR2=0.77, however predictions can be calcu-
lated for all data points.

7 CONCLUSIONS

In this study, the problem of travel-time prediction was considered.
Multi-agent architecture with autonomous agents was implemented
for this purpose. Distributed parameter estimation and cooperative

learning algorithms were presented, using the non-parametric kernel-
based regression model. We demonstrated the efficiency of the sug-
gested approach through simulation with real data from southern
Hanover. The experimental results show the high efficiency of the
proposed approach. In future we are going to develop a combined
approach that allows agent to choose between parametric and non-
parametric estimator for more accurate prediction.
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Event and anomaly detection using Tucker3 decomposition 
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Abstract.1 Failure detection in telecommunication networks is a 
vital task. So far, several supervised and unsupervised solutions 
have been provided for discovering failures in such networks. 
Among them unsupervised approaches has attracted more attention 
since no label data is required [1]. Often, network devices are not 
able to provide information about the type of failure. In such cases, 
unsupervised setting is more appropriate for diagnosis. Among 
unsupervised approaches, Principal Component Analysis (PCA) 
has been widely used for anomaly detection literature and can be 
applied to matrix data (e.g. Users-Features). However, one of the 
important properties of network data is their temporal sequential 
nature. So considering the interaction of dimensions over a third 
dimension, such as time, may provide us better insights into the 
nature of network failures. In this paper we demonstrate the power 
of three-way analysis to detect events and anomalies in time-
evolving network data. 

1 INTRODUCTION 

Event detection can be briefly described as the task of discovering 
unusual behavior of a system during a specific period of the time. 
On the other hand, anomaly detection concentrates on the detection 
of abnormal points. So clearly it is different from event detection 
since it just considers the points rather than a group of points. Our 
work takes into account both issues using multi-way data analysis. 
Our methodology comprises the following steps: 1) Anomaly 
detection: detection of individual abnormal users 2) Generating 
user trajectories (i.e. behavior of users over time), 3) Clustering 
users’ trajectories to discover abnormal trajectories and 4) 
Detection of events: group of users who show abnormal behavior 
during specific time periods. Although there is a rich body of 
research on the two mentioned issues, to the best of our knowledge 
we are the first ones applying multi-way analysis to the anomaly 
and event detection problem. In the remainder of this section we 
explain some basic and related concepts and works. Afterwards, we 
define the problem, and then discuss three-way analysis methods. 
Hereafter, we introduce the dataset and experiments. Finally, we 
discuss the results and point out possible future directions. 

1.1 ANOMALY DETECTION 

Anomaly is as a pattern in the data that does not conform to the 
expected behavior [1]. Anomaly detection has a wide range of 
application in computer network intrusion detection, medical 
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informatics, and credit card fraud detection. A significant amount 
of research has been devoted to solve this problem. However our 
focus is on unsupervised methods. Anomaly detection techniques 
can be classified into five groups [1]: classification-based, 
clustering-based, nearest neighbor based, statistical methods, 
information theory-based methods and spectral methods. Based on 
this classification, our method is placed in the group of spectral 
methods. These approaches first decompose the high-dimensional 
data into a lower dimension space and then assume that normal and 
abnormal data points appear significantly different from together. 
This some benefits: 1) they can be employed in both unsupervised 
and supervised settings 2) they can detect anomalies in high 
dimensional data, and 3) unlike clustering techniques, they do not 
require complicated manual parameter estimation. So far, most of 
the work related to spectral anomaly detection was based on 
Principal Component Analysis (PCA) and Singular Value 
Decomposition (SVD). Two of the most important applications of 
PCA during recent years has been in the domain of intrusion 
detection [2] [3] and traffic anomaly detection [4] [5].  

1.2 EVENT DETECTION  

Due to huge amount of sequential data being generated by sensors, 
event detection has become an emerging issue with several real-
world applications. Event is a significant occurrence or pattern that 
is unusual comparing to the normal patterns of the behavior of a 
system [6]. This can be natural phenomena or manual system 
interaction. Some examples of events can be an attack on the 
network, bioterrorist activities, epidemic disease, damage in an 
aircraft, pipe-breaks, forest fires, etc. A real system behaves 
normally most of the time, until an anomaly occurs that may cause 
damages to the system. Since the effects of an event in the system 
are not known a priori, detecting and characterizing abnormal 
events is challenging. This is the reason why most of the time we 
cannot evaluate different algorithms. One solution might be 
injection of artificial event into the normal data. However, 
construction of a realistic event pattern is not trivial [7].  

1.3 HIDDEN MARKOV MODELS  

Hidden Markov Models (HMMs) have been used at least for the 
last three decades in signal processing, especially in domain of 
speech recognition. They have also been applied in many other 
domains as bioinformatics (e.g. biological sequence analysis), 
environmental studies (e.g. earthquake and wind detection), and 
finance (financial time series). HMMs became popular for its 
simplicity and general mathematical tractability [8]. 
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HMMs are widely used to describe complex probability 
distributions in time series and are well adapted to model time 
dependencies in such series. HMMs assume that observations 
distribution does not follow a normal distribution and are generated 
by different processes. Each process is dependent on the state of an 
underlying and unobserved Markov process [7]. Markov process 
denotes that the value of a process Xt only depends on the previous 
value of X. Using notations of [9] let: 

 
T = Length of the Observation sequence 
N = Number of states 
Q = {q0, q1, …, q (N-1) } = distinct states of Markov process 
A = State transition probabilities 
B = set of N observation probability distributions 
π = Initial State Distribution 
O = (O0, O1,…, O (T-1)) = observation sequence 
 
A HMM Model is defined with the triple of λ= (A, B, π).  It 

assumes that Observations are drawn using the observation 
probability distribution associated to the current state. The 
transition probabilities between states are given in matrix A. 

 
The three main problems related with HMMs are the following. 

The first problem consists in computing the probability P(O) that a 
given observation sequence O is generated by a given HMM λ. The 
second problem consists in finding the most probable sequence of 
hidden states given an observation sequence O and λ and the third 
problem is related to parameter inference. It consists in estimating 
the parameters of the HMM λ that best fits a given observation 
sequence O. The mainly used algorithms to solve these problems 
are given in the last column of Table 1. More details about these 
algorithms can be found in [10]. In this paper, we deal with the 
third problem to estimate the HMM parameters that best describe 
time series, as it will be explained in Section 2. 

 
Table1. Three HMM Problems 

Problem  Input Output Solution 
Problem 1 λ, O P(O) Forward Backward algorithm 

Problem 2 λ, O Best Q Viterbi algorithm  

Problem 3 O λ Baum-Welch algorithm 

 

1.4 THREE-WAY DATA ANALYSIS 

Traditional data analysis techniques such as PCA, clustering, 
regression, etc. are only able to model two dimensional data and 
they do not consider the interaction between more than two 
dimensions. However, in several real-world phenomena, there is a 
mutual relationship between more than two dimensions (e.g. a 3D 
tensor (Users×Features×Time)) and thus, they should be analyzed 
through a three-way perspective. Three-way analysis considers all 
mutual dependencies between the different dimensions and 
provides a compact representation of the original tensor in lower-
dimensional spaces. The most common three-way analysis models 
are Tucker2, Tucker3, and PARAFAC [10] which are generalized 
versions of two-mode principal component model or, more 
specifically, SVD. Following, we briefly introduce Tucker3 model 
as the best-known method for analysis of three-way data. 

1.4.1 Tucker3 Model 

The Tucker3 model decomposes a three-mode tensor � into set of 
component matrices �, �, � and a small core tensor �. The 
following mathematical equation reveals the decomposition: 

 
��	
 ≈ ∑ ∑ ∑ ���

�
���

�
���

�
�� × �� × �	� × �
�  (1) 

Where P, Q and R are parameters of the Tucker3 model and 
represent the number of components retained in the first, the 
second and the third mode of the tensor, respectively.  This 
decomposition is illustrated in Figure 1. 

2 PROBLEM DEFINITION  

One of significant issues in telecommunication systems, such as 
IP/TV, is to detect the anomalies at both network and user level. In 
order to study this, target users are usually equipped with a facility 
in their modem which sends an automatic notification message to 
the central server when the connection of a client in the network is 
lost or reestablished. These modems are ubiquitous and 
geographically dispersed. 
 
The modeling of such behavior is not straightforward because the 
number of notification messages is not equal for each user during 
the time period under analysis. For instance, one user may face 40 
connection problems in an hour, hence generating 40 messages, 
while others may face 5 or even no problems at all. In standard 
event detection problems, for each time point there is a 
measurement via one or multiple sensors. In the context of our 
application, such measurements do not take place at regular time 
points, since user modems (or sensors) only send messages to the 
server when something unexpected occurs. Figure 2 illustrates two 
sample users. Each circle represents the time stamp at which a 
notification relative to the given user is received, while ∆T 
represents the inter-arrival time between two consecutive 
messages. As it can be seen, 2 messages were related to user 1 in 
that period, while 4 were related to user 2 during the same period. 
Also, the ∆T between messages is larger for user 1 than for user 2. 
This means that user 2 sent messages more frequently than user 1.  
As in many other event detection problems, we could easily use the 
number of events per hour (measurement) at different users 
(sensors) to detect the events but this way we would lose the 
information content provided by the ∆T’s.  

As the number of ∆T is not the same for each user, this feature 
cannot be directly integrated in our model. Hence, this would cause 

Figure 1. Tucker3 Decomposition 
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some vectors to have different lengths, which is not supported by 
the Tucker3 analysis. To solve this, every time-series of ∆T 
relative to a given user is modeled by a 2-state HMM obtained by 
the Baum-Welch algorithms [11]. 6 parameters are extracted from 
the HMM and are used to describe the time-series of ∆T of the 
users. Using this approach we obtain the same number of features 
for each user and, then, include this information in our feature 
vectors. 

 
Table2. Datasets in tensor format 

Data  
1st mode (I)  

Users 
2nd mode (J)  

Features 
3rd mode (K) 

Hours 
X102 102 10 720 

X909 909 10 720 

3 DATASET 

Dataset is extracted from the usage log of a European IP/TV 
service provider. The raw dataset includes the notification 
messages of users in each line including their occurrence time. As 
previously mentioned, it is not possible to use this data directly in 
our modeling approach, so some pre-processing steps were 
performed. In addition to the obtained HMM parameters for each 
hour and for each user, we included another features, such as mean, 
variance, entropy and number of messages per hour, to our feature 
vector. We generated two separated datasets, each one spanning a 
time period of one month, which is equivalent to 720 hours. In one 
set we selected 102 users and in another we selected 909 users. The 
latter dataset is an extended version of the former. We then 
transformed both datasets to the tensor format.  These datasets are 
shown in a format of Tucker3 input tensor (figure 1) in Table 2 
where I, J, K represent users, features and hours modes, 
respectively. 

4 EXPERIMENTS 

This section is divided into three subsections, according to the 
steps mentioned in the Introduction section. In subsection 1, we 
explain how we detect the abnormal users. In the next subsection 
we describe how we generate user trajectories And in the last 
subsection we explain how we cluster the trajectories using 
hierarchical clustering and detect events using user trajectories.  

4.1 Abnormal Users 

We applied Tucker3 model to both datasets X102 and X909 by 
employing a MATLAB package called Three-mode component 
analysis (Tucker3) [10]. Before that, we performed ANOVA test 
[10] to see the significance of three-way and two-way interaction 
in the data. The results of this test are presented in Table 3. ANOVA 
Max 2D represents the maximum value obtained via different 
combinations of two-way modeling (e.g. I-J, J-K, I-K). As it can be 
seen, bigger numbers are obtained for three-dimension interaction 
(ANOVA 3D), which reveals that there is a mutual interaction 
between the three dimensions in both datasets that can be explained 
better with three-way modeling like Tucker3, than with two-way 
modeling like PCA.   

 
Table3. ANOVA test and selected model parameters P-Q-R 

Data 
ANOVA 
max 2D 

ANOVA 
3D 

Selected Model  
P-Q-R 

fit 

X102 26.18% 38.90% 3-2-2 42.00 

X909 17.02% 78.04% 40-2-4 51.01 

 
The next step is to estimate the best parameters P, Q, R of 

Equation 1. P-Q-R is similar to what we have in PCA. In PCA we 
just determine the number of PCs for one dimension but here we 
need to determine the number of principal components for each 
one of the three modes. P, Q and R can assume values that fall 
within the interval [1, ���], where ��� denotes the maximum 
number of entities in the corresponding mode. For example, in 
terms of  X102 the P-Q-R can go from 1-1-1 to 102-10-720.  These 
parameters are chosen based on a trade-off between model 
parsimony, or complexity, and goodness of fit. For instance, 
regarding the mentioned dataset, 1-1-1 gives about 28% fit (less 
complete and less complex) and model 102-10-720 gives 100% fit 
(most complete and most complex). If we try parameters 3-2-2 the 
model has a 42% fit. So it can be more reasonable choice because 
it finds a good compromise between complexity and fit. In [10] the 
scree test method is proposed as a guideline to choose these 
parameters. We used this test to determine the best model for both 
datasets. The selected model parameters and their corresponding 
fits are presented in Table 3. This means that, for example, for 
dataset X102 if we choose Tucker3 model with 3, 2 and 2 
components to summarize the users, features and hours modes, 
respectively, the model is able to explain 42% of the total variance 
contained in raw data. After the estimation of model parameters, 
we used the selected model to decompose the raw data into a lower 
dimensional subspace, as illustrated in Figure 1 and Equation 1.  
After the decomposition we obtained matrices �, � and �, a small 
core tensor � and a tensor of residual errors. 

 
In order to detect the abnormal users we simply projected the users 
on the component space yielded by matrix �. This projection is 
presented in Figure 3, for dataset X102. The three-dimensional 
subspace is given by the three obtained components by the model 
for the 1st mode (users). As mentioned earlier, this number of 
components is one of the parameters of the model, namely P = 3, 
which corresponds to the first mode. 

 

Figure 2. Two sample users with different number of messages and 
different intervals 
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In order to evaluate the reliability of the model we used the same 
procedure and applied a Tucker3 model to dataset X909, which 
includes all users of X102. Our idea was to see how this model can 
identify abnormal users from both datasets. For this purpose, we 
computed the Euclidean distance between each user in the 
projection space (see Figure 3) and the corresponding center (0, 0, 
0), for both datasets X102 and X909. Then we normalized the 
distances for each dataset and computed the Pearson correlation for 
the common users of these two datasets, according to their distance 
to the center of the subspace. We obtained a correlation of 68.44%. 
Although, for X909 we just took 3 out of 40 main components to 
and model fit was different for both datasets (42% for X102 and 
51.01% for X909),  abnormal or normal users in X102 
approximately appeared as the same way in X909 with 68.44% 
confidence. This denotes that Tucker3 is a robust model to detect 
the abnormal users. 

4.2 User Trajectories  

Visualization methods like the one we presented in Figure 3 are 
not able to show the evolving behavior of users over time.  We 
need another solution to enable us understanding the behavior of 
users over time. One solution is to project the users on a 
decomposed feature space (matrix � of Figure 1) for each time 
point. Since both of our selected parameters have Q equal to 2 it 
means that after projecting Users on feature space we must have a 
coordinate of (�, %) for each timepoint and for each user. The 
process of generating this coordinates is presented in Figure 4. 
':,� and ':,) represent the two components that summarize the 
original entities of the features mode and � represent the three-
order tensor (see Figure 1). The rows of the front matrix are the 
users, the columns correspond to the features and the third mode 
(*-axis) represents the hours. If we compute the dot product 
between each tensor’s rows with the columns of the component 
matrix �, yielded by the Tucker3 model we obtain the 
coordinate(�, %) for a given timepoint. If we repeat this procedure 
for all time points (e.g. hours), we are able to generate the 
coordinates of each user for the 720 hours. The user trajectories are 

obtained by sequentially connecting these coordinates. Formally 
we define user trajectories as:  

 
Definition 1 (User Trajectory) : A sequence of time-stamped 

points, +,- =  ./ →   .� →  … → .� → ⋯ → .
, where .� (�, %, 3) 
(4 = 0,1, … 5), and 3 is a time point.   

 
Figure 5 shows two abnormal users appearing in the top-10 users 
ranked based on abnormality. These abnormal users were ranked 
based on decreasing values of distance to the center, as explained 
in subsection 4.1, user 10 (right) is ranked 2nd and user 95 (left) is 
ranked 4th.  However, as it is clear from the figure, their behavior 
over time is completely different. User 95 just shows two abnormal 
behaviors that correspond to two time points, while user 10 shows 
this abnormal behavior almost in all time points. This means that 
user 10 is dealing with a stable problem while user 95 only has 
problems in specific points in time. This type of interpretation was 
not possible based only on the ranking list of abnormal users, 
obtained in subsection 4.1. Using user trajectories provides us 
richer insights into different kind of problems a user can 
experience.  For instance, what made user 95 be identified as 
abnormal could be something that suddenly happened in the 
network and then was quickly solved, while for user 10, some 
problems occurred but they weren’t solved until the end of the time 
period under analysis. 

4.3 Event Detection from user trajectories 

Even though user trajectories can be useful, when the number of 
users is too large, the individual analysis of each trajectory can 
become a cumbersome task. If we notice that some group of users 
trajectories behave similarly, this can be understood as something 
abnormal happens in their network level. Then some prevention or 
surveillance operations can be conducted more quickly.  

Figure 3. Projection of Users on Matrix � for dataset X102 

Figure 5. Two sample users trajectories in X909, Left) 4th ranked 
abnormal user Right) 2nd ranked abnormal user 

Figure 4. Generation process of user trajectories 
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To explore this goal, we employed Agglomerative Hierarchical 
Clustering toolbox from MATLAB to cluster user trajectories. We 
defined Euclidean distance between each point in trajectories as 
our distance function and Ward's criterion as the linkage criterion. 
We tested different values of cut-off from 0.6 to 1.2 to examine the 
clustering structure. The most suited clustering structure was 
obtained for a dendrogram distance of 1, which cuts the tree to 
level that, corresponds to three clusters. The average trajectory of 
these clusters is shown in Figure 6. Cluster red has1 user (0.1%), 
cluster blue comprises 866 users (97.4%) and cluster green 
includes 22 users (2.5%).  As it can be seen, no specific pattern can 
be recognized from the green and the red cluster. The users in these 
two clusters show an abnormal behavior almost in all time points. 
Such event can be due to a stable specific problem such as a 
problem in the user device. Regarding the blue cluster, it is 
possible to detect three events. First significant event occurs 
between hours 350 to 400. Second and third events also occur 
between 450 to 480 and 520 to 560, respectively.  However, the 
occurrence of the second and the third events should be assessed 
with hypothesis testing since they can be due to an accidental 
change. 

5 CONCLUSIONS AND FUTURE WORK 

In this paper, we present a study on using the Tucker3 
decomposition to discover abnormal users in an IP/TV network. 
Our results indicate that Tucker3 is a robust method for detecting 
abnormal users in situations where interactions between the three 
dimensions are present.  From the tensor decomposition, we can 
define user trajectories. The trajectories allow us to observe the 
behavior of these users over time. We were able to identify two 
kinds of abnormal users: those who show frequent abnormal 
behavior over the whole time period and those who are associated 
to one or few severe abnormal behaviors over the time period. 
Without resorting to the analysis of user temporal trajectories it 
would have been harder to uncover such facts. Furthermore, from 
the clusters of the users’ trajectories, we have identified three 
events that occurred during three time points in the network. The 
result of this work can be used in a real network surveillance 
system to identify failures in the quickest possible time. In this 
work, we did not consider the spatial relation of users.  Taking into 
account spatial relationships between network nodes could lead to 
a better clustering of users. Since some users might show similar 
behavior, with some delays, other distance measures for clustering 
should be tested. Currently we are employing another distance 
function using dynamic time warping, which assigns two users 
with same behavior but with a time shift in the same cluster.  The 
solution we presented for detection of events was based on 

clustering of trajectories. We are going to apply sliding window on 
trajectories to find time periods that have the most compact 
trajectories, which would lead to the discovery of events in a more 
accurate and reliable way  
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Abstract.
1
   Mining public transportation networks is a 

growing and explosive challenge due to the increasing number of 

information available. In highly populated urban zones, the 

vehicles can often fail the schedule. Such fails cause headway 

deviations (HD) between high-frequency bus pairs. In this paper, 

we propose to identify systematic HD which usually provokes the 

phenomenon known as Bus Bunching (BB). We use the PrefixSpan 

algorithm to accurately mine sequences of bus stops where 

multiple HD frequently emerges, forcing two or more buses to 

clump. Our results are promising: 1) we demonstrated that the BB 

origin can be modeled like a sequence mining problem where 2) 

the discovered patterns can easily identify the route schedule points 

to adjust in order to mitigate such events. 

1. INTRODUCTION 

In highly populated urban zones, it is well known that there is some 

schedule instability, especially in highly frequent routes (10 

minutes or less) [1-5]. In this kind of routes it is more important the 

headway (time separation between vehicle arrivals or departures) 

regularity than the fulfillment of the arrival time at the bus stops 

[4]. Due to this high frequency, this kind of situations may force a 

bus platoon running over the same route. In fact, a small delay of a 

bus provokes the raising of the number of passengers in the next 

stop. This number increases the dwell time (time period where the 

bus is stopped at a bus stop) and obviously also increases the bus’s 

delay. On the other hand, the next bus will have fewer passengers, 

shorter dwell times with no delays. This will continue as a snow 

ball effect and, at a further point of that route, the two buses will 

meet at a bus stop, forming a platoon as it is illustrated in Fig. 1. 

This phenomenon has several denominations: the Bangkok effect 

[6], Bus Platooning [7], Vehicle Pairing [8], Headway Instability 

[1], Bus Clumping or Bus Bunching (BB) [2]. From now on, we 

will use the last one. 

The occurrence of BB forces the controllers to take 

actions in order to avoid this headway instability, forcing the 

adherence to the schedule. BB situations can cause several 

problems like: further buses delays, full buses, decreased comfort 

in the buses, larger waiting times at the bus stops, growing number 

of passengers waiting, greater resources demand and a decrease of 

schedule reliability. All this can cause the loss of passengers to 

other transportation means and/or companies. 
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Figure 1.  Bus Bunching problem illustration. Figure from [1]. 

 

Our goal is to identify the causes of BB occurrences using 

AVL (Automatic Vehicle Location) historical data. The BB 

phenomenon always starts by a headway deviation (HD) at a bus  

stop [9]. We intend to find frequent and systematic HD event 

sequences in the trips of a given route: bus stops where the bus 

activities - like the passenger boarding - will propagate the 

headway irregularities further and further. These bus stops 

sequences highlights problematic route regions: from now on we 

will refer to it as Bunching Black Spots (BBS - bus stops 

sequences where a HD will, with a high probability, start a BB in 

one of the following bus stops of the trip).  

We use the PrefixSpan algorithm (presented in Section 3) to 

mine frequent sequences in the HD sequences extracted from this 

dataset. We apply this methodology to data from two urban lines of 

a public transport operator of Porto. It proved to be efficient in the 

detection of HD patterns in the bus stops of the studied routes.  

The results from this framework can be highly useful to the 

public transport planners. One of the most known ways to mitigate 

the bus bunching is to adjust the slack time introduced in each 

schedule point (bus stops selected along the route for which the 

arrival time is defined) [10]. By using this framework, the planners 

can use the information about the BBS along the routes to select 

which schedule points should be changed (increasing or decreasing 

the slack time) to mitigate BB effectively.  

The main results are: the observation that the BB phenomenon 

starts at the initial bus stops; and the existence of high correlation 

between HD that occurs at a given bus stop and the HD detected in 

the next ones. 

This paper is structured as follows. Section 2 states a brief 

description of the problem we want to solve, the related work, our 

motivation and a clear definition of our approach. Section 3 

presents the methodology proposed. Section 4 presents summarily 

the dataset used, its main characteristics and some statistics about 

it. Section 5 presents the results obtained through the application of 
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the PrefixSpan algorithm to our dataset and a discussion about 

those results. Section 6 concludes and describes the future work we 

intend to carry on. 

2. PROBLEM OVERVIEW 

Nowadays, the road public transportation (PT) companies face a 

huge competition of other companies or even of other 

transportation means like the trains, the light trams or the private 

ones. The service reliability is a fundamental metric to win this 

race [11]: if a passenger knows that a bus of a selected company 

will arrive certainly on the schedule on his bus stop, he will 

probably pick it often. The reverse effect is also demonstrated and 

a BB event forming a visual bus pair is a strong bad reliability 

signal to the passengers’ perception of the service quality, which 

can lead to important profit losses [12, 13]. This tendency to form 

platoons is usual for urban vehicles (specially the PT ones) and 

arises for the specific and complex characteristics of transit service 

perturbations. Those are mainly related with changes in three key 

factors [8]: the dwell time and the loading time (highly correlated) 

and the non-casual passenger arriving (passengers that, for an 

unexpected reason – like a soccer match or a local holiday - try to 

board in a specific bus stop distinct from the usual one). However, 

the study of these changes impact on the service reliability is not in 

our current scope. Our goal is to find persistent and frequent 

headway irregularities which will probably provoke, in a short time 

horizon, a BB event.  

There are two distinct approaches found in the literature to 

handle the BB events: the first one defines the bunching problem as 

a secondary effect of a traffic system malfunction like a 

traffic/logistic problem (signal priority handling, adaptation of bus 

stops/hubs logistics to the needs, adjustments of the bus routes to 

the passengers demand, etc.). The second one defines the BB 

problem like a main one that must be treated and solved per se 

(adjust the timetables and the schedule plans to improve schedules’ 

reliability or set live actions to the irregular bus pairs, for instance).  

In this work, we are just focused on the second approach which 

related work, motivation and scope we present along this section. 

2.1. Related Work 

Gershenson et. al. presented a model adapted from a metro-like 

system and implemented a multi-agent simulation [1]. To achieve 

stability, they implemented adaptive strategies where the 

parameters are decided by the system itself, depending on the 

passenger density. As a result, the system puts a restriction to the 

vehicle holding time (it sets a maximum dwell time), negotiating 

this value for each bus stop with the other vehicles.  

The introduction of AVL systems changed the research point-

of-view on bus bunching, in the last ten years, from planning to 

control. There are several techniques in PT to improve the schedule 

plans on time tables based on AVL data.. C. Daganzo presents a 

dynamic holding time formula based on real time AVL data in 

order to adaptively compensate the headway instability introduced 

in the system [2].  

The relations between the irregularities in the headway 

sequences and the BB events have been recently explored: in [8] is 

presented a study identifying the headway distributions 

representing service perturbations based on probability density 

functions (p.d.f.). Despite their useful conclusions, their model had 

two main disadvantages: 1) is not based in real AVL data and 2) it 

does not present a probability density function to represent the 

pattern of consecutive headways irregularities. We do believe that 

this specific issue can be rather addressed mining frequent 

sequences on real AVL data, as we present here. 

2.2. Motivation and Scope 

We can define the headway irregularities as events that occur in a 

bus stop of a given trip. Those events consist in a large variation (1 

for positive or -1 for negative) on the headway: Headway 

Deviation events (HD).  

These are usually correlated in a snowball effect that may 

occur (or not) in a given (straight or spaced) sequence of bus stops. 

Despite the analysis of the state-of-art work on the mitigation of 

BB events, the authors found no work on systematizing real HD 

patterns that seem to be in the genesis of a BB event.  

An unreliable timetable is one of the main causes of many HD 

events. Usually, a timetable is defined using schedule points: stops 

for which there is an arriving or departing time defined. One of the 

most well-known PT planning ways to mitigate HD events is to 

add/reduce slack time in these defined timestamps to increase 

schedule plan overall reliability. However, only a small percentage 

of the bus stops served by a given timetable are used as schedule 

points. This is exemplified in the upper part of Fig. 2 (the reader 

can obtain further details on schedule plan building in chapter 1 

from [14]).Usually, PT planners easily identify which lines present 

more HD and BB events. However, three questions still remain 

open: 

 

 Which should be the schedule points affected? 

 Which action (increase/decrease slack time) should be 

applied to these schedule points in order to reduce the 

occurrence probability of BB events? 

 Which day periods should have the timestamps in these 

schedule points changed? 

 

In this work, we address the first and third questions by mining 

frequent HD event sequences in the trips of a given route: bus stops 

that systematically propagate the headway irregularities further and 

further. The second issue is out of our scope but it is well 

addressed in the literature [10]. 

Our intention is to point out a route region where an HD event 

fast and systematically propagates itself along the route, forming a 

Bunching Black Spot (BBS). The BBS can be specific of a period 

of the day or continuous along the day. In the bottom part of Fig. 2 

we present an example of a BBS. In the next section we present our 

methodology to mine BBS. 

3. METHODOLOGY 

Our methodology consists in finding consistent patterns of frequent 

HD events occurring in the same bus stops whenever a BB occurs 

– BBS. To do so we compare, at each bus stop, the round-trip times 

of every consecutive bus pairs. With the HD series thus obtained, 

we mine frequent sequence patterns. Firstly, we introduce the 

algorithm we used and finally we describe how we use it to create 

and mine our HD series for a given route. 

14



3.1. Mining Time Series Sequences 

There is a wide range of algorithms that can explore sequential data 

efficiently. To the best of our knowledge, Agrawal and Srikant 

introduced the sequential data mining problem in [15].  Let I = {i1, 

i2,.., in} be a set of items and e an event such that e   I. A sequence 

is an ordered list of events e1e2…em where each ei   I.  

Given two sequences α=a1a2…ar and β=b1 b2 …. bs,  sequence 

α is called a subsequence of β if there exists integers 1 ≤  j1 < j2< 

… <jr ≤ s such that a1   bj1, a2   bj2, … ,ar   bjr. A sequence 

database is a set of tuples (sid, α) where sid is the sequence 

identification and α is a sequence. The count of a sequence α in D, 

denoted count(α, D), is the number of sequences in D containing 

the α subsequence. 

The support of a sequence α is the ratio between count(α, D) 

and the number of sequences in D. We denote sequence support as 

support(α, D). Given a sequence database D and a minimum 

support value λ, the problem of sequence mining is to find all 

subsequences in D having a support value equal or higher than the 

λ value. Each one of the obtained sequences is also known as a 

frequent sequence. 

One of the most interesting approaches to solve this kind of 

problems is PrefixSpan algorithm [16]. This algorithm makes use 

of pattern-growth strategies to efficiently find the complete set of 

frequent sequences. The algorithm starts by finding all frequent 

items (length one sequences). Then, for each one of these frequent 

items (the prefix) PrefixSpan partitions the current database into 

prefix projections. Each projection database contains all the 

sequences with the given prefix. This procedure runs recursively 

until all frequent sequences are found.  

The PrefixSpan algorithm was chose to solve this problem due 

to its popularity and efficiency.  

3.2. Method 

Firstly we constructed headway sequences based in the AVL 

historic data for every bus pairs in a given route. Then we 

identified the headway profiles where BB events occurred based on 

the bus service reliability metrics presented in [17] and we 

extracted HD sequences from them. 

Let X = x1x2…xn be a headway sequence measured between a 

bus pair in a given route through   bus stops running with a 

frequency   (       . We identify a BB if there exists a    

satisfying the inequality    (           for at least one 

    {     }. Based on this headway profiles, we formed a HD 

sequence as follows. Let H = h1h2…hn be the HD sequences based 

on X. We compute the value of each hi (the headway between a bus 

pair in the bus stop    , for each     {     }  using the 

expression 1. 
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where    is a threshold parameter given by the user for the HD 

definition. For the first bus stop is considered an HD of 0. 

Basically, a -1 event corresponds to a negative HD (delay) in a bus 

stop (i.e.: the two buses become closer), the 1 event is a positive 

HD (ahead of schedule) and the 0 occurs when the headway  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 2.  Example of Schedule Points and BBS. The two schemas 

exemplify two routes of a line running between an arbitrary school and a 

main bus station. In top part, route 1A has 19 bus stops represented by 13 

small black circles and 6 big grey circles (the single one’s are just bus 

stops, the double are hubs/interfaces). The last ones are the schedule points 

in the route’s timetables. In the bottom part, the stops belonging to frequent 

HD sequences are identified (even if the BB itself occurs later in the route) 

with a small white circle inside them. The highlighted stops form a route 

region (Bunching Black Spot) where the schedule points need to be time-

adjusted. 

remains stable. 

The xn represents a headway deviation in a bus stop n. The HD 

sequences are ordered according to the bus stop order defined for a 

given route. Our goal is to find sequences of bus stops with 

frequent HD by exploring a set of trips, in a given route, where BB 

occurrences were identified. 

To do so, we collected the HD sequences of trips in work days 

where a BB event occurred and we mined them using the 

PrefixSpan algorithm by setting a (user-defined) minimum support 

value in order to identify HD patterns in the bus stops. The Fig.3 

illustrates our methodology. We applied this methodology to four 

routes in a given period. This data is summarily described in 

Section 4. 

4. DATASET 

The source of this data was STCP, the Public Transport Operator  

of Porto, Portugal. The dataset was obtained through a bus dispatch 

system that integrates an Automatic Vehicle Location (AVL) 

system. The data captured through this system contains data of the 

trips from two lines (A and B) in the working days for the first ten 

months of 2010. Each line has two routes – one for each way {A1, 

A2, B1, B2}. Line B is a common urban line between Viso (an 

important neighborhood in Porto) passing by 26 bus stops 

(BS1_B1 to BS26_B1 and BS1_B2 to BS26_B2, respectively), and 

ending at Sá da Bandeira, a downtown bus hub. Line A is also an 

urban line between another downtown bus hub (Cordoaria) and 

Hospital São João - an important bus/light train interface in the city 

– using 22 bus stops (same schema than line B). 

This dataset has one entry for each stop made by a bus running in 

the route during that period. It has associated a timestamp and a 

day type (1 for work days, 2-6 for other day types i.e.: holidays and 

weekends). Table 1 presents some statistics about the set of trips 

per route considered and the BB events identified. The Nr. of Trips 
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is the total number of trips considered in the given route, TT is the 

round-trip time, expressed in minutes, and DT is the number of 

daily trips occurred. Finally, trips with BB are the trips where at 

least one BB situation occurs and HD events are the positive or 

negative events (             , respectively) measured in 

every bus stops along every trip for a given line.  

5. RESULTS 

We did our experiments only for the trips occurred during the peak 

periods (08:00 to 11:00 and 16:00 to 19:00). We did so because BB 

mainly occurred – as expected – during those periods. The routes 

A1 and A2 suffer more BB events and they are time-dispersed 

along the day. This happens because this line is an urban one 

between two important bus/metro interfaces (the downtown and the 

University Campus) with regular high frequencies during the entire 

day. So, they are highly frequent routes with many passengers 

during the entire day, which are well known factors to provoke BB 

occurrences. We mined sequences just in the bunching partition 

(trips with BB events). Moreover, we use the two partitions to 

compute the confidence of each sequence to be specific on the BB 

one. Our goal was to find patterns (i.e. frequent HD sequences) 

describing the headway irregular behavior of a typical BB trip. 

We did two different experiments: the first one mined 

sequences in both peak hours simultaneously; the second one 

mined each peak hour considered individually (the morning and the 

evening ones). We did so to mine BBS peak-dependent (just occur 

in one of the two peaks), discovering whether the schedule points 

should be adjusted for the entire day or just in a specific period. 

The results presented in Table 2 are for frequent subsequences 

of the HD sequences. We set PrefixSpan minimum support to 40% 

(sequences of length=1) and 20% (sequences with a length greater 

than 1) in the selected data partition, and a ht=0.15. We did so 

because the significance of the second case is higher than the first 

one. The second case demonstrates high correlations between 

distinct HD events in distinct bus stops that explain better the 

origin of the BB events. 

5.1. Discussion 

Firstly, we want to highlight that only frequent HD subsequences 

(BBS) with events of type -1 (headway reductions) were 

detected. All the sequences presents high confidence, 

demonstrating their specific validity in the bunching partition. In 

route B1 two BBS were identified: BS2_B1 and the pair  BS3_B1 

and BS4_B1. Both are located at the beginning of the route: the 

gap verified in these points may become larger in successive stops. 

The pair is deeply analyzed in Table 3: the isolated events in 

BS3_B1 and BS4_B1 have the same support than the events 

occurred in both bus stops. We can also set an association rule like 

BS3_B1= -1 -> BS4_B1= -1 (with a confidence of 97%) 

identifying a solid BBS in those two bus stops and an expected BB 

behavior.  

In line A, BS2_A1 and BS2_A2 were identified as BBS. 

Additionally, they are - as well as the BBS identified in line B – 

located in the beginning of the route. The causes for this behavior 

are, probably, the large affluence of passengers in peak hours but 

the authors cannot sustain this with the available data.  

Summarily, just BBS for the first bus stops were found. Based 

on this, we can conclude that the BB in those routes were largely 

provoked by successive bus delays in the first bus stops (the HD 

 

Table 1. Descriptive statistics for each route considered. These times are in 

minutes. TT means round-trip times. DT means daily trips. Based in our 

HD event definition, the maximum number of events for a time period is 

given as                              . 

 

 B1 B2 A1 A2 

Nr. of Trips 9391 10675 13802 12753 

Nr. of Bus Stops 26 26 22 22 

Minimum TT 11 11 11 11 

Maximum TT 78 82 70 65 

Minimum of DT 39 39 33 36 

Maximum of DT 74 74 89 88 

Median TT 29 21 21 38 

Nr. of Bus Stops 26 26 22 22 

Nr. of Trips w/ BB 332 378 559 630 

Nr. of HD events detected 26905 29911 42803 43525 

 

 

 

 

 

 

 

Figure 3.  Bunching Black Spot Detection Methodology illustration. Tn is 

the time series measured in each bus stop of a given trip. HS are the 

corresponding Headway Sequences and HD the Headway Deviation event 

subsequences. 

 

Table 2. The values presented are the Support of the sequences (number of 

trips where those events occur / total number of BB trips considered) as 

well as the confidence between the occurrences of those in the trips with 

BB and the total trips occurred in the period. 

 

Route Peaks 

Considered 

Sequence 

(possible BBS) 

Support Confidence 

B1 Both BS3_B1 = -1 

BS4_B1=-1 

0,2619 0,75 

B1 Both BS2_B1 = -1 0,4206 0,80 

A1 Both BS2_A1 = -1 0,5095 0,72 

A2 Both BS2_A2 = -1 0,5706 0,61 

B1 8h to 11h BS5_B1 = -1 0,4000 0,91 

B1 8h to 11h BS2_B1 = -1 0,4308 0,85 

A1 8h to 11h BS6_A1 = -1 0,4064 0,88 

A1 8h to 11h BS3_A1 = -1 0,4225 0,87 

A1 8h to 11h BS2_A1 = -1 0,5669 0,72 

A2 8h to 11h BS2_A2 = -1 0,6237 0,74 

B1 16h to 19h BS2_B1 = -1 0,4099 0,82 

A1 16h to 19h BS2_A1 = -1 0,4500 0,81 

A2 16h to 19h BS2_A2 = -1 0,6237 0,78 

 

Table 3. Detailed analysis of the mined sequence BS3_B1 = -1, BS4_B1=-

1. The support of the highlighted sequences 01a and 01b are the same of the 

sequence 01: this can demonstrate an implication between the bus delays in 
the BS3_B1 and BS4_B1, an usual BB behavior. The confidence for a 

possible association rule BS3_B1 = -1 -> BS4_B1=-1 is 97%. 

 

ID Route Peaks 

Considered 

Sequence (possible 

BBS) 

Support 

01 B1 Both BS3_B1 = -1 BS4_B1=-1 0,2619 

01a B1 Both BS3_B1 = -1 0,2619 

01b B1 Both BS4_B1 = -1 0,2619 

 

-1 events are mainly caused by bus delays [8]) although we cannot 

sustain whether they are failing the schedule. 
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In the second study, we analyzed whether the BBS identified 

were coherent in both peak hours. In route B1, the BS2_B1 is a 

BBS for both peak hours. BS2_A1 and BS2_A2 are also persistent 

BBS in both peaks. Those two bus stops correspond to an 

important bus interface (Sá da Bandeira) in the city and to a 

University Campus (Asprela), respectively. This happens because 

both routes maintain a high frequency and a large number of 

passengers during the day, being always busy. 

In our opinion, the short lengths of the frequent subsequences 

mined (1 and 2) are not relevant compared with the relevance of 

the identified patterns. Those lengths will always depend on the 

routes analyzed, so they can be larger when applied to other  

datasets. The achieved patterns demonstrate that the BB patterns  

can be modeled like a frequent sequence mining problem. The 

results achieved demonstrate the utility of our framework to 

identify the exact schedule points to change in the timetables. 

6. CONCLUSIONS AND FUTURE WORK 

In public transportation planning, it is crucial to maintain the 

passengers’ satisfaction as high as possible. A good way to do so is 

to prevent the phenomenon known as Bus Bunching.  

There are two main approaches to handle this problem: the PT 

planning one, anticipating and identifying the origin of the 

problem, and a real time one, which tries to reduce the problem 

online (during the network function). 

Our approach is a contribution to solve the PT planning 

problem: this framework can help to identify patterns of bus events 

from historical data to discover the schedule points to be adjusted 

in the timetables. 

In this paper, we presented a methodology to identify BB 

events that use headway deviations from AVL trips data. We ran a 

sequence mining algorithm, the PrefixSpan, to explore such data.  

The results are promising. We clearly demonstrated the existence 

of relevant patterns in the HD events of the travels with bunching. 

There were some bus stops sequences along the routes 

identified as BBS - Bunching Black Spots, forming regions within 

the schedule points that should be adjusted. We want to highlight 

the following findings: 

 

 The high correlation between HD in distinct bus stops – 

one event in a given bus stop provoke an event on 

another one with a regularity sustained by a reasonable 

support and confidence; 

 The detection of BBS in the beginning of the routes 

demonstrated that HD that occurs in the beginning of the 

trips can have a higher impact into the occurrence of BB 

compared with events occurred in bus stops further. 

The main contributions of this work are: 1) to model the BB trip 

usual pattern like a frequent sequence mining problem; 2) to 

provide the operator the possibility to mitigate the BB in a given 

line by adjusting the timetables, instead of suggesting forced 

actions that can decrease schedule reliability and, consequently, 

reduce passengers’ satisfaction. 

The identified patterns are no more than alerts that suggest a 

systematic cause for the BB in the studied routes. This information 

can be used to improve the schedule. The goal is not to eliminate 

those events but just to mitigate them. Our future work consists in 

forecasting BB in a data stream environment based on AVL data. 

By using this approach, the BSS will be identified online as the 

data arrive in a continuous manner. This possibility will allow the 

use of control actions to avoid BB events that can occur even when 

the timetables are well adjusted, in order to prevent the majority of 

the potential BB occurrences. 
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Holistic distributed stream clustering for smart grids
Pedro Pereira Rodrigues1 and João Gama2

Abstract. Smart grids consist of millions of automated electronic
meters that will be installed in electricity distribution networks and
connected to servers that will manage grid supervision, billing and
customer services. World sustainability regarding energy manage-
ment will definitely rely on such grids, so smart grids need also to
be sustainable themselves. This sustainability depends on several re-
search problems that emerge from this new setting (from power bal-
ance to energy markets) requiring new approaches for knowledge
discovery and decision support. This paper presents a holistic dis-
tributed stream clustering view of possible solutions for those prob-
lems, supported by previous research in related domains. The ap-
proach is based on two orthogonal clustering algorithms, combined
for a holistic clustering of the grid. Experimental results are included
to illustrate the benefits of each algorithm, while the proposal is dis-
cussed in terms of application to smart grid problems. This holistic
approach could be used to help solving some of the smart grid intel-
ligent layer research problems, thus improving global sustainability.

1 INTRODUCTION
The Smart Grid (SG), regarded as the next generation power grid,
is an electric system that uses two-way digital information, cyber-
secure communication technologies, and computational intelligence
in an integrated fashion across heterogeneous and distributed elec-
tricity generation, transmission, distribution and consumption to
achieve energy efficiency. It is a loose integration of complementary
components, subsystems, functions, and services under the pervasive
control of highly intelligent management-and-control systems [4].

A key and novel characteristic of smart grids is the intelligent layer
that analyses the data produced by these meters allowing companies
to develop powerful new capabilities in terms of grid management,
planning and customer services for energy efficiency. The develop-
ment of the market with a growing share of load management incen-
tives and the increasing number of local generators will bring new
difficulties to grid management and exploitation.

1.1 Research problems
Power and current balance is major goal of all electricity distribu-
tion networks, given its impact on the need to produce, buy or sell
energy. Moreover, due to the fluctuating power from renewable en-
ergy sources and loads, supply-demand balancing of power system
becomes problematic [17]. Several intelligent techniques have been
proposed in the past that make use of the amounts of streaming data
that is available. As an example, Pasdar and Mahne (2011) proposed

1 LIAAD - INESC TEC & Faculty of Medicine of the University of Porto,
Portugal, email: pprodrigues@med.up.pt

2 LIAAD - INESC TEC & Faculty of Economics of the University of Porto,
Portugal, email: jgama@fep.up.pt

to use ant collony optimization on smart meters data to improve the
current balancing on low-voltage distribution network. Further re-
search could even take more advantages from smart grids if con-
sumption patterns could be extracted [14].

The energy market is changing to meet the global challenge of
power consumption awareness even at the lower household level [3].
New energy distribution concepts and the advent of smart grids has
changed the way energy is priced, negotiated and billed. We are
now in a world of hourly real-time pricing [1] which make use of
smart meters to overcome the need for demand prediction preci-
sion and, more important, demand prediction reliability [13]. Fur-
thermore, with the advent of micro-generation at household level, the
market expanded into multiplicity of energy buyers and energy sell-
ers. In this setting, new techniques to efficiently auction in the market
are required in order to make the smart grid smarter. Ramachandran
et al. (2011) developed a profit-maximizing adaptive bidding strategy
based on hybrid-immune-system-based particle swarm optimization.

1.2 Components and features

Smart grids are built on different sub-systems and present special
features that need to be attended. The sources of energy are hetero-
geneous (power plants, wind, sun, sea, etc) and might be intermittent.
A key characteristic of a SG is that it supports two-way flow of elec-
tricity and information: a user might generate electricity and put it
back into the grid; electric vehicles may be used as mobile batter-
ies, sending power back to the grid when demand is high, etc. This
backward flow is relevant, mainly in microgrids, where parts of the
system that might be islanded due to power failures. Following [4],
the three major systems in SG are:

• Smart infrastructure system that supports advanced and heteroge-
neous electricity generation, delivery and consumption. Is respon-
sible for metering information and monitoring, and information
transmission among of systems, devices and sensors.

• Management systems providing advanced management and mon-
itoring, grid topology and control services. The objectives are en-
ergy efficiency improvement, supply and demand balance, emis-
sion control, operation cost reduction, and utility maximization.

• Protection system providing grid reliability analysis, failure pro-
tection, security and privacy protection services.

1.3 Advantages and challenges

Some of the anticipated benefits of a SG include [4]:

• improving power reliability and quality;
• optimizing facility utilization and averting construction of back-

up (peak load) power plants;
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• enhancing capacity and efficiency of existing electric power net-
works, hence improving resilience to disruption;

• enabling predictive maintenance and self-healing responses to
system disturbances;

• facilitating expanded deployment of renewable energy sources;
• accommodating distributed power sources, while automating

maintenance and operation;
• reducing greenhouse gas emissions by enabling electric vehicles

and new power sources, thus reducing oil consumption by reduc-
ing the need for inefficient generation during peak usage periods;

• presenting opportunities to improve grid security;
• enabling transition to plug-in electric vehicles and new energy

storage options;
• increasing consumer choice, new products, services, and markets.

All these jointly lead to massive research problems that might be
tackled by artificial intelligence techniques. Some challenges where
machine learning can play a relevant role, include:

• The reliability of the system supports itself on millions of meters
and other devices that require online monitoring and global asset
management [2].

• Real-time simulation and contingency analysis of the entire grid
have to be possible. However, not all operations models currently
make use of real-time data [8].

• Interoperability issues that arise from the integration of distributed
generation and alternate energy sources [17].

• The heterogeneity and volatility of smart grids require mecha-
nisms to allow islanding [9] and self-healing [2].

• Finer granularity in management leads to strong demand response
requirements [7] and dynamic pricing strategies [1].

2 THE DATA MINING POINT OF VIEW
Present SG monitoring systems suffer from the lack of machine
learning technologies that can adapt the behavior of monitoring sys-
tems on the basis of the sequence patterns arriving over time. From
a data mining point of view, a smart grid is a network (eventually
decomposable) of distributed sources of high-speed data streams.

Smart meters produce streams of data continuously in real-time. A
data stream is an ordered sequence of instances that can be read only
once or a small number of times [6, 10], using limited computing and
storage capabilities. These sources of data are characterized by being
open-ended, flowing at high-speed, and generated by non stationary
distributions.In smart grids the dynamics of data are unknown; the
topology of network changes over time, the number of meters tends
to increase and the context where the meter acts evolves over time.

In smart grids, several knowledge discovery tasks are involved:
prediction, cluster (profiling) analysis, event and anomaly detection,
correlation analysis, etc. However, different types of devices present
different levels of resources and care should be taken in data mining
methods that aim to extract knowledge from such restricted scenar-
ios. All these characteristics constitute real challenges and oppor-
tunities for applied research in ubiquitous data mining. Generally,
the main features inherent to ubiquitous learning algorithms are that
the system should be capable of process data incrementally, evolving
over time, while monitoring the evolution of its own learning process
and self-diagnosis this process. However, learning algorithms differ
in the extent of self-awareness they offer in this diagnosis. .

One of the most popular knowledge discovery techniques is clus-
tering, the process of finding groups in data such that data objects
clustered in the same group are more alike than objects assigned

to different groups [6]. There are two different clustering problems
in ubiquitous and streaming settings: clustering sensor streams and
clustering streaming sensors. The former problem searches for dense
regions of the data space, identifying hot-spots where sensors tend to
produce data, while the latter finds groups of sensors that behave sim-
ilarly through time [15]. We identify two different settings for clus-
tering problems in smart grids. In the first setting a cluster is defined
to be a set of sensors (meters, households, generators, etc.). In the
second setting, a cluster is defined to be a set of data points (demand,
supply, prices, etc.) generated by multiple sources.

2.1 Research on clustering electrical networks
Several real-world applications use machine learning methods to ex-
tract knowledge from sensor networks. The case of electricity load
demand analysis is a paradigmatic one that has been (and continues
to be) studied. Sensors distributed all around electrical-power distri-
bution networks produce streams of data at high-speed. Three major
questions rise: a) can we define consumption profiles based on simi-
lar sensors? b) can we find global patterns in network consumption?
and c) can we manage the uncertainty in sensor data?

To efficiently find consumption profiles, clustering techniques
were applied to the streams produced by each sensor, either hier-
archically at a central server [16] or distributed in the network [15].
Although the problem is still very hard to model, given the dimen-
sionality of the networks at stake, the incremental systems evolved
and adapt to changes in the data, bridging the gap to future paths
of research. Regarding global network patterns, related research has
resulted in a system that distributes the clustering process into lo-
cal and central tasks, based on single sensor data discretization and
centralized clustering of frequent states [5]. But data and models are
both uncertain. For example, if a sensor reads 100, most of times it
could be 99 or 101. This uncertainty has been tackled by reliability
estimators and improved predictions using those estimates [13], but
reliability for clustering definitions is still uncharted territory.

2.2 Clustering as a smart grid problem solver
In this work we argue that major smart grids problems previously
enunciated can and should be addressed as unsupervised machine
learning problems.

Power balance Power balance is the most basic-level problem that
smart grids need to solve before anything else. The strongest re-
quirement is that energy is available in the entire network. Hence,
clustering the data and sources together to find hot-spots can de-
tect specific points of danger in the network.

Multiple alternate sources In smart grids, supply and demand
must be leveled across multiple alternate sources. Hence, com-
bining clustering definitions for power demand and power supply
should give indications on how to better level the sources.

Contingency analysis Contingency analysis tries to produce detec-
tion and reaction mechanisms to specific unexpected problems.
Hence, monitoring the evolution of clusters of nodes, should help
on detecting drifting sources of demand or supply.

Islanding Islanding is a concept that is directly connected with clus-
tering, in the sense that it searches for subnetworks where de-
mand and supply are leveled. Hence, local distributed clustering
of sources and data should produce the expected definitions.

Self-healing Self-healing relates to the ability to rearrange and
adapt the network on-the-fly to meet unexpected changes. Hence,
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ad-hoc distributed clustering of sources, independently from a
centralized server, should produce procedures for self-healing.

Online monitoring and asset management These features are
strongly connected with incremental learning and adaptation of
learned models. Hence, incremental models for sources and data
clustering, and their evolution, should provide basic information.

Dynamic energy pricing Energy pricing largely depends on supply
and demand balance. Hence, clustering power demand and supply
together with buy and sell prices, should give insights on prospec-
tive energy pricing.

3 HOLISTIC DISTRIBUTED CLUSTERING

The smart grid produces different types of data, on each source (node
or subnetwork), which must be taken into account: power demand,
power supply, energy sell price, energy buy price. As previously
stated, two clustering problems exist: clustering data and clustering
data sources. This way, each node might be assigned to a cluster on
(at least) eight different clustering definitions. For all problems, there
is a common requirement: each node (meter) should process locally
their own data. Only aggregated data should be shared between the
different nodes in the grid.

From the previous section it became clear that a holistic approach
to clustering in smart grids is needed and should produce benefits
to energy sustainability. In this section we present such a proposal,
based on two existing works on stream clustering (L2GClust and
DGClust) and their prospective integration in a multi-dimensional
clustering system. Next sections present the original clustering algo-
rithms, their application to electricity demand sensor data streams,
and how they could be merged into a holistic clustering system.

3.1 L2GClust: Distributed clustering of grid nodes

Clustering streaming data sources has been recently tackled in re-
search, but usual clustering algorithms need the data streams to be
fed to a central server [15]. Considering the number of sensors possi-
bly included in a smart grid, this requirement could be a bottleneck.
A local algorithm was proposed to perform clustering of sensors on
ubiquitous sensor networks, based on the moving average of each
node’s data over time [15]. L2GClust has two main characteristics.
On one hand, each sensor node keeps a sketch of its own data. On the
other hand, communication is limited to direct neighbors, so cluster-
ing is computed at each node. The moving average of each node is
approximated using memoryless fading average, while clustering is
based on the furthest point algorithm applied to the centroids com-
puted by the node’s direct neighbors. This way, each sensor acts as
data stream source but also as a processing node, keeping a sketch of
its own data, and a definition of the clustering structure of the entire
network of data sources.

Global evaluation of the L2GClust algorithm on synthetic data re-
vealed high agreement with the centralized, yet streaming, counter-
part, being especially robust in terms of cluster separability. Also, for
stable concepts, empirical evidence of convergence was found. On
the other hand, sensitivity analysis exposed the robusteness of the
local algorithm approach. Figure 1 shows that agreement levels are
robust to an increase on the number of clusters, being, however, a bit
more sensitive with respect to network size and cluster overlapping.
Nonetheless, the robusteness to network communication problems is
exposed, as the proportion of agreement is harmed only for high lev-
els of communication incompleteness.
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Figure 1. L2GClust: sensitivity of κ̂ statistic to the number of sensors (d),
for different number (k) and overlap (s) of clusters. Bottom plot presents the

impact of communication incompleteness on average proportion of
agreement for 5 clusters in a 128 sensor network.

One important task in electrical networks is to define profiles
of consumers, to better predict their behavior in the near future.
L2GClust was applied to a sample of an electrical network to try
to find such profiles. From the raw data received at each sub-station,
observations were aggregated on a hourly basis over more than two
and a half years [14]. The log of electricity demand data from active
power sensors was used to check whether consumer profiles would
rise. The log has hourly data from a subsample (780 sensors) of the
entire data set (∼4000 sensors). Since no information existed on the
actual electricity distribution network, the simulator used this dataset
as input data to a random network and monitored the resulting clus-
tering structures. Unfortunately, real data is never clean, and half of
the sensors have more than 27% missing values, which naturally hin-
dered the analysis. Given this, and the dynamic nature of the data,
no convergence was possible in the clustering structures. However,
we could stress that, as more data is being fed to the system, better
agreement can be achieved with the centralized approach, as exposed
in Figure 2. Hence, not only does the agreement tend to increase with
more observations, but also changes on the clustering structure are
apparently possible to detect. L2GClust presented good characteris-
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Figure 2. L2GClust evolution of clustering agreement (probability of
agreement and κ̂ statistic) for a real active power sensor data log.
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Figure 3. DGClust: impact of the number of sensors on loss to real
centroids (top) and communication reduction (bottom) [5].

tics to find clusters of sensors in wide networks such as smart grids.

3.2 DGClust: Grid clustering of grid data streams
Clustering data points is probably the most common unsupervised
learning process in knowledge discovery. In ubiquitous settings,
however, there aren’t many tailored solutions to try to extract knowl-
edge in order to define dense regions of the sensor data space. Clus-
tering examples in sensor networks can be used to search for hot-
spots where sensors tend to produce data. In this settings, grid-based
clustering represents a major asset as regions can be, strictly or
loosely, defined by both the user and the adaptive process [5]. The ap-
plication of clustering to grid cells enhances the abstraction of cells
as interval regions which are better interpreted by humans. More-
over, comparing intervals or grids is usually easier than comparing
exact points, as an external scale is not required: intervals have in-
trinsic scaling. The comprehension of how sensors are interacting in
the network is greatly improved by using grid-based clustering tech-
niques for the data examples produced by sensors.

The Distributed Grid Clustering (DGClust) algorithm was pro-
posed for clustering data points produced on wide sensor net-
works [5]. The rationale is to use: a) online discretization of each
single sensor data, tracking changes of data intervals (states) instead
of raw data (to reduce communication to central server); b) frequent
state monitoring at the central server, preventing processing all possi-
ble state combinations (to cut computation); and c) online clustering
of frequent states (to keep high validity and adaptivity). Each local
sensor receives data from a given source, producing a univariate data
stream, which is potentially infinite. Therefore, each sensor’s data is
processed locally, being incrementally discretized into a univariate
adaptive grid. Each new data point triggers a cell in this grid, reflect-
ing the current state of the data stream at the local site. Whenever
a local site changes its state, that is, the triggered cell changes, the
new state is communicated to a central site. Furthermore, the cen-
tral site keeps the global state of the entire network where each local
site’s state is the cell number of each local site’s grid. Nowadays, sen-
sor networks may include thousands of sensors. This scenario yields
an exponential number of cell combinations to be monitored by the
central site. However, it is expected that only a small number of this
combinations are frequently triggered by the whole network, so, par-
allel to the aggregation, the central site keeps a small list of counters
of the most frequent global states. Finally, the current clustering defi-
nition is defined and maintained by an adaptive partitional clustering
algorithm applied on the frequent states central points.

To evaluate the sensitivity of the system to the number of sensors,
synthetic data was used and the average result for a given value of
granularity (w), averaged over all values of number of frequent states
to monitor (m, as loss seemed to be only lightly dependent on this
factor) was analyzed. In figure 3 we note no clear trend, strengthen-
ing the evidence of robusteness to wide sensor networks. Regarding
communication reduction when compared with centralized cluster-
ing, figure 3 also shows that the amount of communication reduction
does not depend on the number of sensors. This way, the benefits of
reduced transmission rates are extensible to wide sensor networks.

3.3 HDClust: Holistic Distributed Clustering

The two algorithms previously exposed are designed for streaming
data, and work with reduced computational costs in terms of memory
and communications bandwidth. They present strong characteristics
that could be even improved if used together. In L2GClust, each sen-
sor node each node has an approximation of the global clustering. In
DGClust, a centralized site maintains the global cluster structure of
the entire network at reduced communication costs. The main idea of
the Holistic Distributed Clustering (HDClust) is to integrate the local
distributed approach of L2GClust, with the grid data clustering ap-
proach of DGClust, in order to achieve the holistic clustering of data
and sources on sensor networks such as smart grids. Specifically, for
each measured dimension:

• each local node (meter) keeps a sketch of its own data streams (as
in L2GClust) and a local discretization grid (as in DGClust);

• communication is restricted to the neighborhood (as in L2GClust);
• at regular intervals, each local node receives from its neighbors

the estimates of the clusters centroids (as in L2GClust) and the
current data discretized grid cell (as in DGClust);

• each node keeps an estimate of the global clustering of nodes by
clustering neighbors’ centroids (as in L2GClust);

• each node keeps a frequent state list and maintains a clustering of
the most frequent states (as in DGClust) from the neighbors;
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Figure 4. HDClust schema to be applied at each node, for each included
dimension. Left branch applies L2GClust while right branch applies

DGClust using data from the neighbors, each node acting also as central
clustering agent. Both clustering definitions are then combined and

integrated with other measured dimensions.

• to link clustering of sources with clustering of data, each node also
receives from the neighbors their self assignment to a cluster.

In the resulting cluster structure, each sensor maintains C clusters of
data sources, and K clusters of data points.

In a smart grid context, and taking advantage of the decomposable
property of the grid network (microgrids), L2GClust and DGClust
can work together. Assume a microgrid of D sensors, and 4 dimen-
sions or quantities of interest: power demand, power supply, energy
sell price and energy buy price. The resulting HDClust, the network
is summarized by C clusters of data sources, and K clusters of data
points, for each quantity of interest. In real-time and at each moment,
each sensor is in a state 〈ci, ki〉 in each dimension. Figure 4 presents
the global schema for a holistic approach to clustering, to be applied
at each node of a smart grid. The combination of the characteristics
both algorithms seems not only possible, but extremely relevant as
complementary knowledge discovery in a holistic view of the grid.

4 REMARKS AND FUTURE PATHS
Smart grids are a paradigmatic example of ubiquitous streaming data
sources. Data is produced at high speed, from a dynamic (time-
changing) environment. Meters are geographically distributed, form-
ing a network. On top of clustering algorithms, several tasks can

be computed: profiling, anomaly and event detection, outliers de-
tections, trends, deviations, etc. In this paper, we have discussed
distributed clustering algorithm for data streams produced on wide
sensor networks like smart grids. Furthermore, we have shown how
smart grid problems can be addressed as clustering problems, and
proposed a holistic approach to better extract knowledge from the
grid. We believe that this holistic approach could be used to help
solving some of the smart grid intelligent layer research problems.
Current research focus on the integration of both algorithms into the
schema and its evaluation on real-world electrical networks data.
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Efficient Mobility Pattern Stream
Matching on Mobile Devices

Simona-Claudia Florescu1 and Michael Mock1 and Christine Körner1 and Michael May1

Abstract. The increasing amount of mobile phones that are
equipped with localization technology offers a great opportunity for
the collection of mobility data. This data can be used for detecting
mobility patterns. Matching mobility patterns in streams of spatio-
temporal events implies a trade-off between efficiency and pattern
complexity. Existing work deals either with low expressive patterns,
which can be evaluated efficiently, or with very complex patterns
on powerful machines. We propose an approach which solves the
trade-off and is able to match flexible and sufficiently complex pat-
terns while delivering a good performance on a resource-constrained
mobile device. The supported patterns include full regular expres-
sions as well as relative and absolute time constraints. We present
the definition of our pattern language and the implementation and
performance evaluation of the pattern matching on a mobile device,
using a hierarchy of filters which continuously process the GPS input
stream.

1 INTRODUCTION

The analysis of mobility behavior based on GPS-tracks has become
a popular field of research [15, 7, 4, 16, 18]. In the context of the
European LIFT [10] project, we aim at the on-line monitoring of
global non-linear phenomena from massively distributed streams of
data. In the mobility domain such global phenomena are, for exam-
ple, mass events or changes in traffic flows. The basic approach of
LIFT technology for the reduction of communication overhead is to
build local mobility models on each device and to communicate only
significant changes to a central coordinator, which is computing the
global model. This paper presents an approach for building the local
mobility model efficiently on a mobile device.

Mobility patterns such as used in [4] and [7] are an appropriate
way of modeling spatio-temporal mobility behavior. Powerful spe-
cialized database systems such as [16] allow to retrieve patterns from
spatio-temporal data using complex pattern queries, in which spa-
tial and temporal conditions can be freely combined. Providing this
flexibility for pattern definitions for building local mobility models
on a mobile device would surely exceed the computational power
of such devices. Patterns expressed by regular expressions only, but
not supporting queries over travel times (as in [4]) might have a bet-
ter chance of being efficiently implemented on a mobile device. The
same holds for the work of [7], which allows queries over travel times
but supports sequential patterns only. Our approach of building mo-
bility models is based on the notion of visits as being formally intro-
duced in [12, 11]. Patterns are build as regular expression over visits,

1 Fraunhofer Institute for Intelligent Analysis and Information
Systems, Germany, email:simona.florescu@gmail.com, first-
name.lastname@iais.fraunhofer.de

and time constraints are applied to complete patterns. For achiev-
ing an efficient implementation on the mobile device, we spread the
task of pattern matching over a filter hierarchy that is fed with the
stream of GPS input data: Firstly, a VisitEventFilter detects whether
a certain location is being visited and, if so, forwards a visit event to a
PatternFilter, which can handle arbitrary regular expressions (includ-
ing Kleene closure) over visit events. Lastly, a TimeConstraintFilter
is used to check any expression over the travel time for the com-
plete pattern. By this approach, we can use standard deterministic
automatons for implementing matching of regular expressions and
can perform efficient time constraint checking in constant time. The
remainder of this paper is structured as follows: in the next section,
we present our approach, mobility pattern matching over streams
containing the pattern definition language and details of the imple-
mentation of the pattern matching algorithm. Section 3 contains the
performance and scalability evaluation and Section 4 discusses re-
lated work. The last section, conclusions, provides a short summary,
improvement suggestions and future work.

2 MOBILITY PATTERN MATCHING

Figure 1 describes our general approach for building local and global
mobility models. As described in [11], our mobility model is based
on counts of occurrences of events, whereby an event represents the
occurrence of a specific predefined spatio-temporal behavior in the
observed GPS track. The local mobility model represents the behav-
ior of a specific user and is locally computed on the device itself,
whereas the global model is build by aggregating all local models
on a single node (global coordinator). LIFT technology is used to
reduce the amount of communication needed for maintaining the
global model correct over time. The basic approach thereby is to de-
fine a so-called SafeZone, in which the local model can safely vary
without notifying the global coordinator [17]. In this paper, we fo-
cus on the question whether the input for generating the local model
can be computed efficiently on a mobile device, i.e., the gray shaded
part in Figure 1. Being able to compute a model locally is a prerequi-
site for applying LIFT technology for communication reduction. The
local mobility model is computed by processing the stream of GPS
updates as provided by an Android Location Provider through a hier-
archy of filters (see [8] for the details of filter interface definitions).
At the first level, the VisitEventFilter detects whether the device stays
for a pre-defined minimum time in one of the pre-defined locations,
which are stored in the local location database. If so, a visit event
is generated, which will be processed at the next layer in the hier-
archy, the PatternFilter. This Filter takes list of predefined patterns
(regular expressions over visits) as input and matches the incoming
visit events against these patterns. In case of a match, a pattern event
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is forwarded to the next filter. At the last filter level, the TimeCon-
straintFilter, the time constraints for the matched pattern are vali-
dated. If they are fulfilled, the respective pattern frequency count is
increased. The input for our implementation consists therefore of:
(1) an infinite stream of GPS-sensed location updates, (2) a given set
of interesting locations to be monitored, (3) a set of patterns with the
set of interesting locations as domain, as depicted in the figure below,
Figure 1.

TimeConstraintFilter

VisitEventFilter

PatternFilter

Mobile Device with Android OS

Change notification

LIFT Global 
Coordinator

Global 
Mobility 
Model

LIFT Local Mobility ModelLIFT Local Mobility Model

GPS Update

Android Location ProviderAndroid Location Provider

VisitEvent

PatternEvent

Matched TimePattern

Location
Definition
Database

Pattern & 
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Figure 1. Filter hierarchy and data flow of the approach.

2.1 Pattern Matching Language

We propose a pattern language based on regular expressions. We
define the language for the three main levels of our approach: Vis-
itEventFilter, PatternFilter and TimeConstraintFilter.

Firstly, we define a location, of which the input data for the Vis-
itEventFilter consists. A location is defined by an id, a type, a spatial
extend and the minimum stay time at the location. Note that this def-
inition allows for overlapping locations (for example: a location for
a specific attraction inside the location ”Amusement Park”) as well
as for monitoring complete regions by dividing a region in a spa-
tial grid of locations. In our implementation we consider rectangular
spatial shapes, therefore we define the four coordinates of the bound-
ing boxes. The id is a unique identification for the location and the
type of location (e.g. cinema, fast-food, school) is coded for short-
ness purposes with two digits. The minimum stay time defines the
time period that an encounter with a location must last in order to
become a visit.2 A location is defined as:

location := id, type, xmin, xmax, ymin, ymax,minStay (1)

We represent a visit event, generated by the VisitEventFilter with
the following attributes: location identification, location type, entry
and exit time (in milliseconds):

2 Both the bounding box radius and minimum stay time are defined
application-depend, depending on the location type (e.g. for bigger loca-
tions we set the minimum stay time higher) in order to distinguish between
passing by and visiting.

visitEvent := (id, type, entryT ime, exitT ime) (2)

We define a visitExpression as being the concatenation of the id,
type and the stayTime using the within separator ”,”:

visitExpression := concat(id, type, stayT ime, sep = ”, ”)
(3)

The stay time is the difference between the exit and entry time.
Similarly to [4] it is expressed as a sequence of repeated time units t
so that it can be matched by regular expressions. This enables pattern
queries like ”a stay time of at least 5 and at most 20 minutes”. The
duration of a time unit depends on the required accuracy and can be
set to e.g. one minute. An example of a visit expression is: 1,01,tttt
which represents a visit event with location 1, of type 01 (here code
for cinema) and a stay time of 4 time units.

A pattern consists of (1) a regular expression of one or several
visitExpressions and (2) a timeConstraint - containing absolute and
relative constraints:

pattern := (regex(visitExpression+), timeConstraint) (4)

timeConstraint := ([fexit], [opf ], [lentry], [opl], [lc], [rc]) (5)

The regular expression is defined according to the regular
language specified in [14] on the alphabet of visitExpressions
(Definition 3). Several expressions are hereby separated by a
semicolon. In a digital format we represent a pattern in XML
(Extended-Markup-Language). Figure 2 shows an example of a
mobility pattern. The pattern’s XML representation is shown in the
code snippet below Figure 2. The part of the pattern containing the
regular expression is

1,01,t{0,4};@;2,02,t{4,8};

It denotes a visit to location 1 (of type 01) for up to 4 time units
followed by an arbitrary number of visits to unspecified locations
(expressed by @3), followed by a visit to location 2 (of type 02) for
a stay time between 4 and 8 time units.

The time constraint of the pattern definition (Definition 5) is
checked by the TimeConstraintFilter and contains absolute and rel-
ative constraints. The absolute time constraints are: (1) fexit - the
constraint on the first event exit time in milliseconds; (2) opf - the
operator applied to fexit with the following possible values: 0 for
less, 1 for equals, 2 for greater than, - for none; (3) lentry - the con-
straint on the last event entry time in milliseconds and (4) opl - the
operator applied to lentry with the same values as opf . In the ex-
ample given below no absolute time constraints are specified but, for
example, the values: fexit = 1, 000, 000 and op1 = 2 would im-
pose on the first visit event that its exitTime must be greater than
1,000,000. The relative time constraints are: (5) lc - the left con-
straint for the pattern duration in milliseconds and (6) rc - the right
constraint for the whole pattern in milliseconds e.g. lc < lentry −
fexit < rc. For the given example the relative time constraint is:
0 < visitEventid=2.entryT ime− visitEventid=1.exitT ime <
7, 200, 000.

Below, the XML for the pattern depicted in Figure 2 is shown
containing the pattern id, the regular expression of the sequence of
visits as well as the time constraints.
3 In [14] the JAVA library automaton specifies a regular language implemen-

tation where the symbol ’@’ represents any sequence of characters
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Figure 2. Mobility pattern example: a visit to location 1 followed by an
arbitrary number of visits to intermediate locations followed by a visit to

location 2 with a maximum time period of 2 hours (7,200,000 milliseconds)
between the first and last visit

<?xml version=’1.0’?>
<PatternList>

<Pattern>
<id>1</id>
<regex>1,01,t{0,4};@;2,02,t{4,8};</regex>
<tc>

<f_exit>-</f_exit>
<op_f>-</op_f>
<l_entry>-</l_entry>
<op_l>-</op_l>
<lc>0</lc>
<rc>7200000</rc>

</tc>
</Pattern>

</PatternList>

2.2 Pattern Matching Algorithm
Our approach consists of several filters implemented in an embed-
ded Android application: a VisitEventFilter, a PatternFilter and the
TimeConstraintFilter which return a pattern distribution from a GPS
stream input, see Figure 1 and Section 1.

The first filter, the VisitEventFilter, receives as input the stream
of GPS coordinates and a set of locations stored in a local SQLite
database and generates visit events. In order to do so it checks
whether there is a spatial match between the coordinates and
the input of locations, described in Section 2.1 Pattern Matching
Language. The input database contains the tables, which are joined
by their id:

Locations1(id, xmin, ymin, ymax, ymax)
Locations2(id, latitude, longitude, name, type,min stay)

The main steps of the visit filtering approach are: firstly, the
database is queried to retrieve the ids of the locations in which the
current position is in. As we are restricting the current implementa-
tion to rectangular locations, this can be achieved by a first query
such as:

SELECT Id FROM Locations1 WHERE x ≥ xmin and
x ≤ xmax and y ≥ ymin and y ≤ ymax

followed by another query on the Locations2 table for retrieving
the rest of the location information (Definition 1).

Secondly, we are maintaining a list of entered locations. Whenever
we detect that the current GPS point is no longer in a specific one of
those entered locations, we check whether we have been staying at
least a time of minStay within that location and, if so, generate a visit
event for that location. In any case, the location is removed from the
list of entered locations. The complete algorithm can be found in [6].

In the PatternFilter we model the patterns using deterministic fi-
nite automata [9]. We instantiate an automaton for each of the parsed
patterns from the XML input. In the PatternMatcher class we create
and model automata using the JAVA library automaton [14] to match
the regular expressions specified in the first part of Definition 4.

The class structure of the pattern matching algorithm consists of:

• A PatternFilter class, which instantiates in its constructor a list of
PatternMatcher objects by calling the PatternReader class. The
PatternFilter maintains the list of all patterns. It receives visit
events in its update function and generates and forwards pattern
events to the next filter, the TimeConstraintFilter.

• A PatternMatcher class where an automaton is modeled. In the
constructor the variables needed for saving the automaton data
structure are initialized as well as a pattern event object for storing
the information of the matched pattern.

• The PatternReader reads and converts a pattern from XML to an
object of type PatternMatcher.

• The filter class TimeConstraintFilter checks if the time constraints
are fulfilled for a received pattern event. In its constructor, it reads
and parses the time constraints for each pattern into a TimeCon-
straint object.

In the PatternMatcher constructor, provided in the pseudocode of
Class 1, the field automaton represents an object of type Ru-
nAutomaton, defined in the JAVA library automaton. The fields
for defining the state of the automaton are actualState and
isInitial. The patternEvent is an object of type Event
which stores the properties of the generated pattern event for each
match. The logic of the PatternMatcher is contained in the func-
tions processVisit and reset shown in the pseudocode of Class 1.
The processVisit function receives a visitEvent as a pa-
rameter, generated by the previous filter (the VisitEventFilter), and
returns a boolean value of true if the visit event completes the
matching of a given pattern and false if not. The processVisit func-
tion generates the visitExpression which has the structure
given in Definition 3. The stepThrough function runs through
the automaton with each character from the visitExpression
as transition and returns the step obtained after the run. A value
for step of -1 means that the matching failed. Any other value
means that the automaton advances in another state, changing vari-
able actualState. In this case and if the isInitialwas true,
the patternEvent stores the exitTime of the visit event. If the
visitExpression could not be matched, the function reset is
called. There, the patternEvent attributes are set to null and the
state of the automaton is set to initial. Another check in the function
is whether the automaton has reached the final state. In this case
the patternEvent stores the entryTime of the visit event since
this is its last visit event matched in the pattern.

The pseudocode of the PatternFilter is shown in Class 2. In the
constructor a list of PatternMatcher objects is generated, one for
each given pattern. Further, the PatternReader class, which reads and
parses the XML input patterns, is called. For each pattern string the
PatternReader instantiates a PatternMatcher by calling its construc-
tor as shown in Class 1. In the update function of the PatternFilter,
for each new visit event update, all the existing PatternMatcher ob-
jects from the patternMatcherList are traversed and called to
execute the processVisit function, shown in Class 1. If the re-
turned value from processVisit is true, then the matched pattern
event, patternEvent is forwarded to the next filter.

Finally, in the TimeConstraintFilter the matched pattern time con-
straints are checked, if any are provided. The time constraints are de-
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Class 1 PATTERNMATCHER
Fields: automaton - deterministic automaton for the pattern

actualState - the actual state of the automaton
patternEvent - an Event object for a matched pattern
isInitial - boolean value for initial state of automaton

Constructor: PatternMatcher(id, regex)
id - pattern id
regex - regular expression

1: this.patternEvent.id← id
2: this.automaton← new RunAutomaton(regex)

// using DFA java library from [14]
3: this.reset()

reset()
4: this.patternEvent.entryT ime← null
5: this.patternEvent.exitT ime← null
6: this.actualState← (this.automaton.getInitialState())
7: this.isInitial← true

boolean processVisit(visitEvent)
8: visitExpression← makeV isitExpression(visitEvent)
9: step← automaton.stepThrough(actualState, visitExpression)

// stepThrough returns the state reached by inputting all characters of the visitEx-
pression to the automaton starting with actualState

10: if step 6= −1 then // step is -1 for a mismatch
11: if this.automaton.isInitial then
12: this.patternEvent.entryT ime← visitEvent.exitT ime
13: this.isInitial← false
14: end if
15: actualState← step
16: else // the visitExpression could not be entirely matched
17: this.reset()
18: end if

// check whether the automaton has reached the end state
19: if automaton.isF inal() then
20: this.patternEvent.exitT ime← visitEvent.entryT ime
21: this.reset()

// automaton is set on the initial state and all variables are reinitialized
22: return true
23: else
24: return false
25: end if

Class 2 PATTERNFILTER
Fields: patternMatcherList - a list of objects of type

PatternMatcher

Constructor: PatternFilter()

1: reader = newPatternReader()
2: this.patternMatcherList← reader.parseAutomaton(input file)

// instantiate list of PatternMatcher

update(visitEvent)
3: for PatternMatcher ∈ patternMatcherList do
4: if PatternMatcher.processV isit(visitEvent) then
5: forward(PatternMatcher.patternEvent)
6: end if
7: end for

fined in Section 2.1 (Pattern Matching Language) and relate to the
first and last event in the matched pattern, respectively. The Time-
ConstraintFilter constructor instantiates a TimeConstraint object for
each pattern. When invoked with a pattern id of the incoming pattern
event, it checks the existing time constraints for the respective pattern
id. The generated event at this level is a matched time pattern.

3 PERFORMANCE EVALUATION
Our performance evaluation for checking the potential of the appli-
cation in practice is based on synthetic data. The tests were run on
a Samsung Galaxy SII GT-I9100, operating Android Gingerbread,
version 2.3.3. The GPS stream data consists of synthetically gener-
ated coordinates. In addition, we retrieved 800,000 points of interest
(POI) from the geo-service OSM [13] for the location set. The POIs
were obtained for Germany and are of 15 different types. The gener-
ated patterns are formulated similarly to the example pattern in Sec-
tion 2.1 and Figure 2, i.e. they specify the first and last location and
allow an arbitrary number of visit events in between. In addition, all

patterns possess time constraints. Our artificial GPS data is generated
such that 40% of all points lead to a match with the location database
and generate a visitEvent. For performance evaluations of the Pat-
ternFilter 2,6% of the input visitEvents complete a pattern match.
Finally, each pattern match is checked in the TimeConstraintFilter.

#Locations 10 100 1K 10K 100K 500K 800K
Run-time (ms) 0.72 0.69 0.79 0.82 0.75 0.73 0.75

Stddev run 0.90 0.71 0.71 0.81 0.78 0.66 0.79
DBQuery (ms) 0.35 0.33 0.39 0.42 0.35 0.37 0.36

Stddev DBQuery 0.60 0.46 0.54 0.67 0.38 0.54 0.55

Table 1. The run-time values for the VisitEventFilter.

#Patterns 100 1K 10K 100K 300K
Run-time (ms) 1.2 17.1 157.0 1498.4 4397.3

Stddev. 0.08 6.5 7.1 24.0 129.6
Start-up (ms) 266.3 275.1 239.2 499.9 1341.8

Stddev. 201.6 225.1 48.2 9.3 15.3
Heap size (MB) 2.67 2.68 2.75 2.76 2.76
Memory (MB) 5 10 10 12 24

Table 2. The run-time values for the PatternFilter

Firstly, we measured the run-time for the VisitEventFilter. We var-
ied the size of the location set from 10 to 800,000. Table 1 shows the
obtained performance results. We distinguish between the database
query (DBQuery) and the entire run-time (Run-time) measured be-
fore forwarding a visit event, therefore the DBQuery run-time is in-
cluded in the run-time value. Table 1 shows that the run-time of the
VisitEventFilter is nearly constant when varying the number of loca-
tions in the underlying database. We ascribe this behavior to caching
effects in the SQLite database, taking into account that the database
is opened only once and that all queries are read-only. Ongoing ex-
periments and code analysis showed that the time needed for the
database part in the VisitEventFilter depends on the number of over-
lapping locations in which a given GPS point resides. In the syn-
thetic GPS tracks used in the evaluation, the GPS points match to
one (non-overlapping) location only. All visit events are detected in
a time well below one second, which is the time difference between
two GPS location updates in worst case. In addition, the number of
monitored locations will be geographically limited in practice. For
example, when restricting the collected POI (points-of-interest) to
the city of Cologne, we obtained a set of about 20,000 locations.

Secondly, we evaluated the run-time of the PatternFilter under
an increasing number of checked patterns with an average match-
ing percentage of 2,6%. The results are shown in Table 2. The table
also contains the reading and parsing time for all patterns (Start-up),
which takes place in the PatternFilter constructor. The run-time for
the pattern matching increases linearly with the number of tested pat-
terns (Run-time), which corresponds to the main loop executed in the
PatternFilter.update method. Furthermore, for each of the instances
of the PatternFilter we show the heap size and the allocated mem-
ory. The values were captured for about three runs as delivered by the
Android debugger class. The results for the heap size are relatively
constant and show for the memory allocations fair results, since the
high number of 300,000 patterns use about 24MB out of 64MB.

The TimeConstraintFilter has a constant run-time, since it only
retrieves the time constraints for the respective pattern id from a
HashMap, and the time constraint validation is trivial. The run-time
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for the TimeConstraintFilter is approximately 10 milliseconds per
pattern event.

4 RELATED WORK
Table 3 gives an overview on related work in the field of spatio-
temporal mobility analysis. The criteria on which we compare re-
lated work are: (1) stay time (Stay) - patterns with conditions on
minimum and maximum stay time, (2) travel time (TT) - the time
span between two locations in the pattern, (3) the time constraints
(TC) - time constraints on the full pattern, i.e. on first and last loca-
tion in the pattern, (4) full regular expressions (FullRE) - supporting
all the expression options from regular expressions i.e. Kleene clo-
sure (+,*), negation, conjunction, disjunction, and (5) predicates -
additional complex conditions on the pattern (e.g. an attribute should
have an incrementing value) and (6) Stream - whether the approach
is applied on-line (on stream data) or later, off-line. Although our
matched patterns are not the most complex, our approach is the first
one successfully tested on a resource-constrained device.

Approach Stay TT TC FullRE Pred. Stream
T-patterns [7] - X - - - -

Mob. patterns [4] X - - X - -
SASE [18] X - X X X X
SASE+ [1] X - - X X X
Cayuga [2] - - X X X X
STPQ [16] X X X X X -

Our Approach X - X X - X

Table 3. Comparison with related work

The function addProximityAlert provided by the Android
LocationManager [3] performs a similar task as our VisitEvent-
Filter. Comparative experiments between both classes showed that
the Android function can register proximity alerts for only less than
30,000 locations, compared to our approach, which has been tested
for up to 800,000 locations.

5 CONCLUSION
In this paper we have shown that the detection of state-of-the art com-
plex mobility patterns can be implemented on a resource-constrained
environment such as a mobile device. Our experiments show that the
pattern matching can process the matching of 800,000 locations and
up to 10,000 complex patterns in much less than one second. For
handling more locations or more patterns, measures can be taken
to reduce the number of GPS position updates by configuring the
Android Location Provider appropriately or by adding intermediate
GPS smoothing filters. For example, for a frequency of 5 seconds per
position update request, our application can efficiently scale up to at
least 800,000 locations and over 300,000 complex patterns.

We consider a few improvements for future work. We have ini-
tial measurements of battery consumption which are promising, but
need to be investigated in detail. The VisitEventFilter performs very
fast (see Table 1). This results from using rectangular locations only,
which allows to search for locations with the simple query shown in
Section 2.2 efficiently. Specific applications may, however, require
more complex location geometries. For the PatternFilter, run-times
mainly depend of the loop executed over the set of patterns. Here, we
can explore parallelism of the underlying multi-core hardware and

we can apply optimizations from the area of complex event process-
ing, see [5]. Furthermore, the handling of travel times (in addition
to pattern time constraints) will be investigated by the repeated hier-
archical composition of our PatternFilter and TimeConstraint filters.
Lastly, we will evaluate the performance of our approach on real-
world data collected from 70 users in the city of Cologne, Germany.
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Predicting Ramp Events with a Stream-based HMM
framework

Carlos A. Ferreira1 and João Gama2 and Vı́tor S. Costa3 and Vladimiro Miranda 4 and Audun Botterud5

Abstract. The motivation for this work is the study and prediction
of wind ramp events occurring in a large-scale wind farm located in
the US Midwest. In this paper we introduce the SHREA framework, a
stream-based model that continuously learns a discrete HMMmodel
from wind power and wind speed measurements. We use a super-
vised learning algorithm to learn HMM parameters from discretized
data, where ramp events are HMM states and discretized wind speed
data are HMM observations. The discretization of the historical data
is obtained by running the SAX algorithm over the first order varia-
tions in the original signal. SHREA updates the HMM using themost
recent historical data and includes a forgetting mechanismto model
natural time dependence in wind patterns. To forecast ramp events
we use recent wind speed forecasts and the Viterbi algorithm, that
incrementally finds the most probable ramp event to occur.

We compare SHREA framework against Persistence baseline in
predicting ramp events occurring in very short-time horizons.

1 Introduction

Ramping is one notable characteristic in a time series associated with
a drastic change in value in a set of consecutive time steps. Two prop-
erties of a ramping event i.e. slope and phase error, are important
from the point of view of the System Operator (SO), with impor-
tant implications in the decisions associated with unit commitment or
generation scheduling. Unit commitment decisions must prepare the
generation schedule in order to smoothly accommodate forecasted
drastic changes in wind power availability [2]. In this paper we
present SHREA a novel stream-based framework that predictsramp-
ing events in short term wind power forecasting.

The development of the SHREA framework is the answer to the
three main issues available in ramp event forecasting. How can we
describe and get insights on the wind power, and wind speed, time-
dependent dynamic and use this description to predict short-time
ahead ramp events? How can we combine real valued historicalwind
power and speed measurements and Numerical Weather Predictions
(NWP), specially wind speed predictions, to output reliable real-time
predictions? How can we continuously adapt SHREA to accommo-
date different natural weather regimes yet producing reliable predic-
tions?

To answer these questions we designed a stream-based framework
that continuously learns a discrete Hidden Markov Model (HMM)
and uses it to generate predictions. To learn and update the HMM the
SHREA framework uses a supervised strategy whereas the HMM

1 LIAAD-INESC TEC and ISEP - Polytechnic Institute of Porto, Portugal
2 LIAAD-INESC TEC and FEP - University of Porto, Portugal
3 CRACS-INESC TEC and FC - University of Porto, Portugal
4 INESC TEC and FE - University of Porto, Portugal
5 Argonne National Laboratory, Argonne, IL, USA

parameters are estimated from historical data, the state transitions
probabilities are estimated from wind power measurements and the
emission probabilities, at each state, are estimated from wind speed
observations. To estimate the state probability transitions, first, we
combine a ramp filter, a derivative alike filter, and a user-defined
threshold to translate the real-valued wind power time series into
a labeled time-series, coding three different types of rampevents:
ramp-up, no-ramp and ramp-down. Then, the transitions occurring
in this labeled time series are used to estimate the transitions of the
Markov process hidden in the HMM, i.e., to model the transitions be-
tween the three states associated with the three types of ramp events.
To learn the HMM emission probabilities, first we combine a ramp
filter and the SAX algorithm [9] to translate the wind speed measure-
ments signal into a string. Next we use both the wind power labeled
time series and the wind speed string to estimate the emission proba-
bilities at each state. The estimative is obtained by counting the string
symbols, coding wind speed variations, associated with a given state/
ramp event.

When we analyze wind power historical data we observe both sea-
sonal weather regimes and short-time ahead dependence of the recent
past wind power/speed measurements. Thus, to accommodate these
issues, in SHREA we included a strategy that forgets old weather
regimes and continuously updates the HMM with the most recent
measurements, both wind power measurements and wind speed mea-
surements.

To generate ramp event predictions occurring in short-timeahead
window we use the wind speed forecast, obtained from a major NWP
provider, and the current HMM. First, we run a filter over the wind
speed forecast signal to obtain a signal of wind speed variations.
Next, we run the SAX algorithm to translate the resulting real-valued
time series into a string. Then, we run the Viterbi algorithm[12] to
obtain the most likely sequence of ramp events. We could use the
Forward-Backward algorithm [12] usually used to estimate the pos-
terior probability but we would be using long time ahead, thus unre-
liable, wind speed forecasts to predict current ramp events.

It is important to observe that wind speed measurements and
forecasts, mainly short time horizon predictions, are approximately
equally distributed over time. Moreover, the wind power output of
each turbine is related to wind speed measurements.

In this work we run the SHREA framework to describe and predict
very short-time ahead ramp events occurring in a large-scale wind
farm located in the US Midwest. We present a comparison against
the Persistence model that is known to be hard to beat in short-time
forecasts [10].

Despite the difficulty of the ramp forecasting problem, in this work
we make the following contributions: Develop a stream-based frame-
work that predicts ramp events and generates both descriptive and
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Figure 1: Illustration of ramp events, defined as a change of at least50% in
power in an interval of 4 hours

cost-effective models; Introduce a forgetting mechanism so that we
can learn a HMM using only the most recent weather regimes; Use
wind speed forecasts as observations of a discrete HMM to predict
short-time ahead ramp events.

In the next Section we introduce the ramp event forecast problem.
In Section 3 we present a detailed description of our framework.
In Section 4 we present and discuss the obtained results. Last, we
present some conclusions and present future research directions.

2 Ramp Event Definition and Related Work

One of the main problems in ramp forecasting is how to define a
ramp. In fact, there is no standard definition [7, 3, 8] and almost
all existing literature report different definitions, depending, for in-
stance, on the location or on the farm’s size.

The authors in [5] and [11] define several relevant characteris-
tics for ramp definition, characterization and identification: to define
a ramp event, we have to determine values for its three key char-
acteristics: direction, duration and magnitude (see Figure 1). With
respect to direction there are two basic types of ramps: the upward
ones (or ramp-ups), and the downward ones (or ramp-downs). The
former, characterized by an increase of wind power, result from a
rapid raise of wind speeds, which might (not necessarily) bedue to
low-pressure systems, low-level jets, thunderstorms, wind gusts, or
other similar weather phenomena. Downward ramps are due to ade-
crease in wind power, which may occur because of a sudden deple-
tion of the pressure gradient, or due to very high wind speeds, that
lead wind turbines to reach cut-out limits (typically 22-25m/s) and
shut down, in order to prevent the wind turbine from damage [4]. In
order to consider a ramp event, the minimum duration is assumed to
be 1 hour in [11], although in [7] these events lie in intervals of 5 to
60 minutes. The magnitude of a ramp is typically representedby the
percentage of the wind farm’s nominal power - nameplate.

In [7] the authors studied the sensitivity of two ramp definitions
to each one of the two parameters introduced above: ramp amplitude
ranging from150 to 600MW and ramp duration values varying be-
tween5 and60 minutes. The definition that we present and use in
this work is similar to the one described in [7]. It is more appropri-
ate to use in real operations since it does not considers a time-ahead
point to identify a ramp event.

Definition 1 A ramp event is considered to occur at time pointt, the
end of an interval, if the magnitude of the increase or decrease in the
power signal is greater than the threshold value, thePref :

|P (t)− P (t−∆t)| > Pref

The parameter∆t is related to the ramp duration and defines the
size of the time interval considered to identify a ramp. In [11] some

results are presented that relate this parameter to the typeand mag-
nitude of identified ramps. ThePref parameter is usually defined
according to the specific features of the wind farm site and, usually,
is defined as a percentage of the nominal wind power capacity or a
specified amount of megawatts.

A comprehensive analysis of ramp modeling and prediction may
be found in [2].

Algorithm 1 : SHREA: a stream-based ramp predictor
input : Three time series:PT , wind power measurements;OT , wind speed measurements; andJT , wind

Speed forecasts;a, the forecast horizon;Pref , threshold to identify ramp events;∆t, the ramp

definition parameter;W, the PAA parameter that specifies the amount of signal aggregation; σ, a
forgetting factor

output: A sequence of predictionsQd
r . . . Qd

r+a for each period/windowd = 1, . . .

countTimeP eriods ← 0; flag ← 0; Acount ← 0; Bcount ← 0;
for each period/windowd do

countT imeP eriods + +
Preprocessing1
Pd
s ← fitSpline(Pd), Od

s ← fitSpline(Od), Jds ← fitSpline(Jd)

Pd
f ← rampDef(Pd

s , ∆t), Od
f ← rampDef(Od

s , ∆t), Jdf ← rampDef(Jds , ∆t)

Ld ← label(Pd
f , Pref ); // Label Data

Od
n ← znorm(Od

f ), Jdn ← znorm(Jdf )

Od
str ← SAX(PAA(Od

n )), OFd
str ← SAX(PAA(Jdn ))

Learn Supervised HMM2
π ←
(δ(Ld(r) = rampDown), δ(Ld(r) = noramp), δ(Ld(r) = rampUp))

λd(A, B, π)← LearnHMM(Od
str (1, . . . , r), Ld(1, . . . , r), Acount, Bcount )

Predict Ramp Events using the learned HMM3
Qd

r . . . Qd
r+a ←V iterbi(λ, OFd

str(r + 1, . . . , r + a))

λd(A, B, π)← updateHMM(Od
str(r + 1, . . .), Ld(r + 1, . . .))

Forgetting mechanism4
if (countTimePeriods==σ) then

Aaux
count ←Acount; Baux

count ←Bcount; flag ← 1

if (countTimePeriods modσ == 0 & flag==1) then
Acount ← Acount − Aaux

count; Bcount ← Bcount − Baux
count

3 Methodology developed to Forecast Ramps

In this section we present SHREA framework, a stream-based frame-
work that uses a supervised learning strategy to obtain a HMM.
SHREA continuously learns a discrete HMM on a fixed size non-
overlapping moving window and, at each time period, uses theup-
dated HMM to predict ramp events. We introduce a forgetting mech-
anism to forget old wind regimes and to accommodate weather global
changes. The SHREA architecture has three main steps (see algo-
rithm pseudo-code in Algorithm 1): preprocessing phase, where a
ramp filter and the SAX algorithm are used to translate real valued
signals into events/strings; learning phase, where a supervised strat-
egy is used to learn a HMM; and prediction phase, where the Viterbi
algorithm is used to forecast ramp events. In the following lines we
describe each one of these phases.

3.1 Preprocessing In the preprocessing phase we translate the
real-valued points occurring in a given time periodd, i.e. occurring
inside a non-overlapping fixed size window, into a discrete time-
series suitable to be used at HMM learning and prediction time. First,
we fit a spline to both the wind power and wind speed measurements
time series obtaining, respectively, two new signals,Pd

s andOd
s . We

run the same procedure overJ time series, a wind speed forecast, and
obtainJd

s . We fit splines to the original data to remove high frequen-
cies that can be considered noisy data. Second, we run ramp defini-
tion one, presented above in Section 2, to filter the three smoothed
signals and obtain three new signals:Pd

f ,Od
f andJd

f . These signals
are wind power and speed variations, derivative alike signals, suitable
to identify ramp events. Third, we use a user-defined power varia-
tion threshold, the input parameterPref value, to translate the wind
power signalPd

f into a labeled time seriesLd(1, . . . , r+a), where1
is the first point of the time window,r is the forecast launch time and
a is the time horizon. We map each wind power variation into oneof
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three labels/ramp events: ramp-up, ramp-down and no-ramp.These
three labels will be the three states of our HMM and the transitions
will be estimated using the points of theLd time series.

At this point we already have the data needed to estimate the tran-
sitions of the Markov process hidden in the HMM process. Now we
need to transform wind speed data into a format suitable to estimate
emission probabilities of the discrete HMM that we are learning. We
combine Piecewise Aggregate Approximation (PAA) and SAX algo-
rithms [9] to translate the wind speed variations into symbolic time
series, more precisely. Thus, we normalize the two wind speed sig-
nals and obtainOd

n andJd
n signals.Od

n will be used to estimate the
HMM emission probabilities and theJd

n will be used as the ahead ob-
servations that will be used to predict ramp events. Next, werun the
PAA algorithm in each one of these signals to reduce complexity and,
again, obtain smoothed signals. The degree of signal compression is
theW PAA parameter that is a user-defined parameter of SHREA.
This parameter is related with time point aggregation. Next, we run
the SAX algorithm to map each PAA signal into string symbols.This
way we obtain two discrete signalsOd

str andJd
str. After the prepro-

cessing phase we have two discrete time series,Ld andOd
str that will

be used to learn the HMM state transitions and emissions probabili-
ties, respectively.

3.2 Learn a Discrete HMM Here we explain how do we learn the
HMM in the time periodd, and then how we update it in time.

In the HMM that we learn, compactly writtenλ(A, B, π), the
state transitions, theA parameter, are associated with wind power
measurements and the emissions probabilities, theB parameter, are
associated with wind speed measurements. In Figure 2 we showa
HMM learned by SHREA at the end of the 2010 winter. To estimate
these two parameters we use the ramp labels,Ld(1, . . . , r), and the
wind speed mesurements signals,Od

str(1, . . . , r), and run the well-
known and straightforward supervised learning algorithm described
in [12]. To estimate the transition probabilities between states, the
three-way matrixA, we count the transitions between symbols ob-
served inLd(1, . . . , r) and compute the marginals to estimate the
probabilities. To estimate the emission probabilities foreach state,
the matrixB, we count, for each state, the observed frequency of
each symbol and then use state marginals to compute the probabili-
ties. This way, we obtain the maximum likelihood estimate ofboth
the transitions and the emission probability matrices.

We now explain how to update the model in the time. We de-
sign our framework to improve over the time with the arrivingof
new data. At each time periodd SHREA is fed with new data and
the HMM parameters are updated to include the most recent histor-
ical data. At each time periodd we update the HMM parameters by
counting the state transitions and state emissions coded inthe cur-
rent vectorsOd

str(1, . . . , r) andLd(1, . . . , r), obtaining the number
of state transitions and emissions at each HMM state, theAcount and
Bcount. Then, we compute the marginal probabilities of each matrix
and obtain the updated HMM, the modelλd(Ad, Bd, πd) that will be
used to predict ramp events. The learned HMM,λd, will be used to
predict ramp events occurring betweenr andr + a. In the next time
period (i.e. the next fixed sized time window) we will update theλd

HMM, using this same strategy but including also the transitions and
emissions of the time periodd that were not used to estimateλd, i.e.,
we updateAcount andBcount with the wind measurements of the
time periodd occurring afterd’s launch time and befored+1 period
launch time, ther point. By using this strategy we continuously up-
date the HMM to include both the most recent data and all old data.
By using this strategy, and with the course of time, the HMM can be-

come less sensitive to new weather regimes. Thus we introduce a for-
getting strategy to update the HMM using only the most recentmea-
surements and forgetting the old data. This strategy relieson a thresh-
old that specifies the number of time periods to include in theHMM
estimation. This forgetting parameter,σ, is a user-defined value that
can be set by experienced wind power technicians. Considering that
at time periodd we have readσ time periods and that we backup the
current counts intoAaux

count and Baux
count temporary matrices. After

reading2σ time periods we will use the following forgetting mecha-
nism:A2σ

count = A2σ
count−Aaux

count andB2σ
count = B2σ

count−Baux
count.

Then, we resetAaux
count andBaux

count equal to the updatedA2σ
count and

B2σ
count matrices, respectively. Next, to predict ramp events occurring

in the time periods following2σ, we will update and use the HMM
parameters obtained from theA2σ

count andB2σ
count to forecast ramp

events. Every time we read a number of time periods that equals a
multiple of σ we apply this forgetting mechanism using the updated
auxiliary matrices.

3.3 Predict Ramp Events using the learned HMM In this step
we use the HMM learned in time periodd, the λd, and the string
Jd

str, obtained from wind speed forecasts, to predict ramp events for
the time points ranging fromr to r + a. Remember thatr is the
prediction launch time anda is the forecast horizon.

To obtain the ramp event predictions we run the Viterbi algo-
rithm [12]. We feed this algorithm withJd

str andλd and get the state
predictions (the ramp events)Qd

r+1, . . . ,Qd
r+a for the time points

r + 1, . . . , r + a of time periodd. Saying it in other way we obtain
predictions for the points occurring in a non overlapping time win-
dow starting atr and with length equal toa. We will obtain the most
likely sequence of states that best explains the observations, i.e., we
will obtain a sequence of statesQd

r+1, . . . ,Qd
r+a that maximizes the

probabilityP (Qd
r+1, . . . ,Qd

r+a|Jd
r+1, . . . , Jd

r+a, λd).
Regarding theπ parameter, we introduce a non classical approach

to estimate this parameter. We defined this strategy after observing
that it is almost impossible to beat a ramp event forecaster that pre-
dicts the ramp event occurring one step ahead to be the current ob-
served ramp event. Thus, we setπ to be a distribution having zero
probability for all events except the event observed at launch time,
the r time point. In the pseudo code we writeπ ← (δ(Ld(r) ==
rampDown), δ(Ld(r) == noramp), δ(Ld(r) == rampUp),)
whereδ is a Dirac delta function defined byδ(x) = 1, if x is TRUE
andδ(x) = 0, if x is FALSE.

4 Experimental Evaluation

In this section we describe the configurations, the metrics
and the results that we obtain in our experimental evaluation.

Table 1: Misclassification
Costs
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Figure 2: Winter HMM
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Table 2: KSS, SS and Expected Cost Mean and standard deviation for the last 100 days of the evaluation period

SHREA Persistence

Metric
∆t=1 ∆t=2 ∆t=3

∆t=1 ∆t=2 ∆t=3
phE=0 phE=1 phE=2 phE=0 phE=1 phE=2 phE=0 phE=1 phE=2

T
im

e
ah

ea
d 30 min

KSS 0.144(0.002) – – 0.332(0.001) – – 0.446(0.002) – – 0.144(0.002) 0.332(0.001) 0.446(0.002)
SS 0(0) – – 0(0) – – 0(0) – – – – –

ECost 3.129(0.016) – – 4.176(0.027) – – 4.04(0.019) – – 3.129(0.02) 4.176(0.03) 4.041(0.02)

60 min
KSS 0.152(0.001) 0.202(0.002) – 0.278(0.001) 0.314(0.204) – 0.369(0.001) 0.417(0.001) – 0.127(0.009) 0.203(0.001) 0.343(0.001)
SS 0.028(0.001) 0.085(0.002) – 0.094(0.00) 0.139(0.001) – 0.038(0.001) 0.113(0.001) –

ECost 2.312(0.18) 2.107(0.014) – 3.860(0.39) 3.719(0.39) – 4.374(0.61) 4.108(0.61) – 8.731(0.99) 14.687(1.50) 16.104(1.63)

90 min
KSS 0.123(0.000) 0.185(0.001) 0.231(0.002) 0.193(0.001) 0.240(0.001) 0.296(0.002) 0.271(0.001) 0.316(0.001) 0.345(0.001) 0.101(0.001) 0.163(0.002) 0.258(0.002)
SS 0.0244(0.002) 0.093(0.001) 0.145(0.001) 0.035(0.001) 0.091(0.002) 0.159(0.001) 0.018(0.001) 0.079(0.001) 0.118(0.001) – – –

ECost 2.089(0.013) 1.938(0.012) 1.807(0.010) 4.252(0.03) 4.028(0.025) 3.728(0.024) 5.165(0.025) 4.893(0.023) 4.677(0.025) 3.204 (0.030) 6.112(0.042) 6.783(0.050)

4.1 Experimental Configuration Our goal is to predict ramp
events in a large-scale wind farm located in the US Midwest. To
evaluate our system we collected historical data and, to make pre-
dictions, use wind speed power predictions (NWP) for the time pe-
riod ranging between 3rd of June 2009 and 16th of February 2010.
Each turbine in the wind farm has a Supervisory Control and Data
Acquisition System (SCADA) that registers several parameters, in-
cluding the wind power generated by each turbine and the measured
wind speed at the turbine, the latter are 10 minute spaced point mea-
surements. In this work we consider a subset of turbines and com-
pute, for each time point, the subset mean wind power output and
the subset mean wind speed, obtaining two time series of measure-
ments. The wind speed power prediction for the wind farm location
was obtained from a major provider. Every day we get a wind speed
forecast with launch time at 6 am and having 24 hours horizon.The
predictions are 10 minute spaced point forecasts. In this work we
run SHREA to forecast ramp events occurring 30, 60 and 90 min-
utes ahead, thea parameter. We start by learning a HMM using five
days of data and then use the learned, and updated, HMM to gen-
erate predictions for each fixed size non overlapping time window.
Moreover, we split the day in four periods and run SHREA to learn
four independent HMM models: dawn, period ranging between zero
and six hours; morning, period ranging between six to twelvehours;
afternoon, period ranging between twelve and eighteen hours; nigh,
period ranging between eighteen and midnight. The last fourmodels
were only used to give some insight on the ramp dynamics and were
not used to make predictions. We define a ramp event to be a change
in wind power production higher than20% of the nominal capacity,
i.e., we set thePref threshold equal to20% of the nominal capacity.
Moreover, we run a set of experiments by setting∆t parameter equal
to 1, 2 and 3 time points, i.e., equal to 30, 60 and 90 minutes. We run
SHREA using thirty minute signal aggregation, thus each time point
represents thirty minutes of data. In these experiments we also con-
sider phase error corrections. Phase errors are errors in forecasting
ramp timing [5]. We identify events that occur in a timestamp, t, not
predicted at that time, but predicted instead to occur in one, or two,
time periods immediately before or aftert.

Furthermore, as SHREA is continuously updating the HMM, we
set the forgetting parameterσ = 30, i.e., each time the system reads a
new period of 30 days of data, the system forgets 30 days of olddata.
The amount of forgetting used in this work results from a careful
study of the wind patterns.

For this configuration we compute and present the Hanssen &
Kuippers Skill Score (KSS) and the Skill Score (SS) [1, 6]. More-
over, we compute the expected misclassification costs (EC) using the
formula presented in [13]. The cost matrix presented in Table 1 de-
fines the misclassification costs. We compare SHREA against aPer-
sistence baseline algorithm. Despite its simplicity, the predictions of
this model are the same as the last observation, this model isknown
to be hard to beat in short-time ahead predictions [10].

4.2 Results This work is twofold and here we present and ana-
lyze both the descriptive and predictive performance of theSHREA
framework.

In Figure 2 we present an example of HMM generated by SHREA
in February. This model was learned when running SHREA to pre-
dict 90 minutes ahead events and setting∆t = 2. This HMM has
three states, each state is associated with one ramp type, and each
state emits six symbols, each representing a discrete bin ofthe ob-
served wind speed. The lower level of wind speed is associated with
thea character and the higher level of wind speed is associated with
thef character. The labels in the edges show the state emissions and
the state transition probabilities.

The HMM models that we obtained in our experiments uncover
interesting ramp behaviors. If we consider all the data usedin these
experiments, when we set∆t = 1 we found that there were de-
tected7% more ramp-up events than ramp-down events. When we
set ∆t = 3 we get the inverse behavior, we get4% more ramp-
downs than ramp-ups. This behavior is easily explained by the wind
natural dynamics that causes steepest ramp-up events and smooth
ramp-down events. If we analyze independently the four periods of
the day we can say that we have a small number of ramp events,
both ramp-ups and ramp-downs, in the afternoon. If we compute the
mean number of ramps, for all∆t parameters we get approximately
30%(15%) more ramp-up(ramp-down) events at night than in the af-
ternoon. Overall, we can say that we get more ramp events at night
and, in second place, at the dawn period. Moreover, we can saythat
in the summer we get, both for ramp-up and ramp-down events, wind
speed distributions with higher entropy, we get approximately 85%
of the probability concentrated in two observed symbols. Different
from this behavior, in the winter we have less entropy in the wind
speed distribution associated with both types of ramp events. In the
winter we have approximately91% of the probability distribution
concentrated in the one symbol. The emission probability distribu-
tion of the ramp-down state is concentrated in symbola and the emis-
sion probability distribution in the ramp-down state is concentrated
in symbol f. These two findings are consistent with our empirical
visual analysis and other findings [4]: Large wind ramps tendto oc-
cur in the winter and usually there is a rapid wind speed increase
followed by a more gradual wind speed decrease. These findings are
also related with the average high temperature in the summerand
with the stable temperatures registered during the afternoons. Con-
sidering the∆t parameter, we can say that the number of ramps,
both ramp-ups and ramp-downs, increase with the∆t parameter. In
general, we observe large ramps only when we compare time points
that are 20 to 30 minutes apart.

As is illustrated in Figure 2 we identified a large portion of self-
loops, especially ramp-up to ramp-up transitions in the winter nights.
The percentage of self-loops range between12%, when we run
SHREA with∆t = 1, and55% when we set∆t = 3. This self-loop
transition shows that we have a high percentage of ramp events hav-

31



ing a magnitude of at least40% of the nameplate, two times thePref

threshold. Furthermore, in the winter we get a higher proportion of
ramp-up to ramp-down and ramp-down to ramp-up transitions than
in the summer. This is especially clear at the dawn and night periods.
This phenomena can be related with the difference in the average
temperatures registered in these time periods.

Before presenting the forecast performance, it must be saidthat
the quality of ramp forecasting depends a great deal on the quality of
meteorological forecasts. Moreover, as the HMMs representproba-
bility distributions it is expected that SHREA will be biased to predict
no-ramp events. Typically SHREA over predicts no-ramp events but
makes less severe errors. This biased behavior of SHREA is anac-
ceptable feature since it is better to forecast a no-ramp event when
we observe a ramp-down(ramp-up) event than predicting a ramp-
up(ramp-down) event. In real wind power operations (see Table 1)
the cost of the later error is several times larger than the former er-
rors.

In Table 2 we present the mean (inside brackets we present theas-
sociated standard deviation) KSS, SS and Expected Cost metrics that
we obtained when running SHREA, and the reference model, to pre-
dict ramp events occurring in the last hundred days of the evaluation
period.

Before presenting a detailed discussion of the obtained results, we
must say that, if we consider the same∆t parameter, in all exper-
iments we obtained better, or equal, results than the baseline algo-
rithm, the Persistence algorithm. Moreover, we must say that when
we generate predictions for the 30 minute horizon (one time point
ahead, since we use 30 minutes aggregation) we get the same results
as the Persistence model. This phenomena is related with thestrategy
that we used to define the HMM initial state distribution. Remember
that we set the HMMπ parameter equal to the last state observed.

As expected, the KSS results worsen with the increase of the time
horizon. It is well known that the forecast reliability/fit worsens as
the distance from the forecast launch time increases. Moreover we
can say that we obtained better KSS values for the morning period
than in the other three periods of the day. For lack of space wedo not
present a detailed description of the results that we obtainwhen we
run SHREA to predict ramp events occurring in each one of the four
periods of the day. This can be related with the wind speed forecasts
launch time. The wind speed forecast that we use in this work is
updated every day at 6 am.

The analysis of the∆t parameter shows that the mean KSS val-
ues increase with the increase in the∆t value. Again, this can be
explained by the wind patterns, typically the wind speed increases
smoothly during more than 30 minutes. In Table 2 we can see clearly
that SHREA performance improves with the increase in∆t param-
eter. We observe the same behavior when inspecting the results that
we obtained by running the Persistence algorithm. Concerning the
SS, we can see that we obtain improvements over the Persistence
forecast that ranges between0% and16%.

Concerning the phase error technique, we get important improve-
ments for the two phase error parameter values considered inthis
study. The amount of improvement that we obtained by considering
the phase error can be valuable in real time operations. The techni-
cians can prepare the wind farm to deal with a nearby ramp event.
In Table 2 we present the results without considering the phase error
technique,phE = 0, and considering one time point (30 minutes),
phE = 1, and two time points (60 minutes),phE = 2, phase errors
corrections.

We also introduce a misclassification cost analysis framework that
can be used to quantify the management decisions. We define a mis-

classification cost scenario (see Table 2) and show that SHREA
produces valuable predictions. In this real scenario, SHREA gener-
ates significant lower operational costs and better operational perfor-
mance than the baseline model.

5 Conclusions and Future Work

In this work we obtained some insights on the intricate mechanisms
hidden in the ramp event dynamics and obtain valuable forecasts for
very short-time horizons. For instance, we can now say that steepest
and large wind ramps tend to occur more often in the winter. More-
over, typically there is a rapid wind speed increase followed by a
more gradual wind speed decrease. Overall, with the obtained HMM
models we both obtained insights on the wind ramp dynamics and
generate accurate predictions that prove to be cost beneficial when
compared against a Persistence forecast method.

The performance of SHREA is heavily dependent on the wind
speed forecasts quality. Thus, in a near future we hope to getspe-
cial purpose NWP suitable to detect ramp events and having more
frequent daily updates. Moreover, we will study multi-variate HMM
emissions to include other NWP parameters like wind direction and
temperature.
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People Identification Based on Sitting Patterns
Nguyen Gia 1 and Takuya Takimoto 2 and Nguyen Doan Minh Giang 3

and Jin Nakazawa 4 and Kazunori Takashio 5 and Hideyuki Tokuda 6

Abstract. This paper proposes a people identification method based
on the sitting patterns. This method uses weak evidences from pres-
sure sensors, accelerometer sensors, and light sensors placed on a
chair to recognize who is sitting on the chair without any psycholog-
ical and physical burden on users. We discuss how we have imple-
mented the system using softmax regression model, gradient descent
algorithm and nearest neighbor search algorithm. Our experimental
result shows that this method can be used in places which has private
properties such as a home or small a office.

1 Introduction

Nowadays, there are several biometric people identification methods
such as fingerprint based[1], iris based[2] or by the using of vein[3].
These biometric identifiers are strong and suitable for applications
that request high accuracy such as security applications. However
these identifiers annoy user with the requests for specific actions. For
example, in the case of fingerprint, users have to properly touch a fin-
gerprint scanner or in the case of retina, users have to look at retina
scanner for a while, which might cause a psychological and physical
burden on users. These methods also need delicate and expensive de-
vices such as fingerprint scanner or retina scanner. In such situations
as inside of a house or a small office with a small number of users, we
do not need high accuracy as those available with strong identifiers.
For example, in a small office, which employees come from some
different country, an employee comes to the office, sits on a public
chair and turns on a public computer. And then, a greeting sound of
his/her country comes out of the speaker and that computer’s lan-
guage will be automatically change to his/her native language. Is it
interesting? For the other scenario, an office has a meeting but the
boss is in a business trip so he/she uses a robot for teleconference.
The robot stands in the middle of meeting room and when the boss
wants to talk with one of his/her employees, he/she only has to let
the robot knows the employee’s name instead of rotating robot by
hand. Both of these scenarios can be realized with one of the above
people identification methods, but using biometric identifiers for this
scene is wasteful and unnecessary. Any mistake of people recogni-
tion in these scenes is not a big problem, users can easily overcome
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2 Graduate School of Media and Governance, Keio University, Japan, email:
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it by simple actions. So, it is acceptable to inference to the user who
is sitting beforehand based on weaker evidences. Collecting weak
evidences also can be implemented without any psychological and
physical burden of users.

This paper proposes an easy deployment and inexpensive people
identification method that uses weak evidences from pressure sen-
sors, accelerometer sensors and light sensor placed on a chair. The
reason of using pressure sensor is the difference of weight among
users. Also, we think that the sitting patterns are different between
users so we use accelerometer sensors to recognize the movement
of the chair when user sit in it. The light sensor is used to measure
the coverage of user in the chair. We have used softmax regression
model, a supervised learning algorithm and gradient descent algo-
rithm, an algorithm to solve optimization problem to inference who
is sitting in the chair

Remainder of this paper is organized as follows. Section 2 de-
scribes the design and implementation of system. The softmax re-
gression model, gradient descent algorithm, nearest neighbor search
algorithm and how they are used are discussed in Section 3. Section
4 shows the result of our experiment while Section 5 is about related
work. Conclusions and future work are described in Section 6.

2 Design and Implementation
2.1 Hardware
We use SunSPOT[8] for accelerometer sensor and light sensor.
SunSPOT (Sun Small Programmable Object Technology) as shown
in Figure 1(a) is a wireless sensor network mote which developed by
Sun Microsystems. One SunSPOT device has three types of sensor
including an accelerometer sensor, a light sensor and a temperature
sensor. In this research, we only use one SunSPOT device to sense
accelerometer and light data. These data can be sent to a computer
for processing through a base station as shown in Figure 1(b).

(a) SunSPOT device (b) SunSPOT base station

Figure 1. SunSPOT

We also attach to the chair four pressure sensors. We use FSR406
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for a pressure sensor and Figure 2 shows how it can be viewed in
fact. We want to use as least as possible sensors to reduce the cost of
the system and we think that four is a good number. It is enough for
people recognition issue based on weak evidences.

Figure 2. FSR406 Pressure Sensor

Figure 3 shows how sensors are placed in the chair. The light sen-
sor is used to measure the coverage of user in the chair so it should
be placed in the side of the chair.

SunSpot
( Light Sensor, Accelerometer Sensor )

Pressure Sensor ( FSR406 )

Figure 3. Sensors placed on a chair

2.2 Software

The software diagram of this system is shown in Figure 4 . The data
receiver module receives data from sensors and forwards it to the
data processing module. In here, the data is normalized to be used in
the learning module. In the learning module, the system uses softmax
regression model and gradient descent algorithm to inference to the
user who are sitting beforehand, output result and get confirmation
from user through the user interaction module.

Sensor Module

Accelerometer
Sensor

Pressure
Sensor

Light
Sensor

Data Processing

 Module

Learning Module

Data Receiver

 Module

User Interaction

 Module

Sensor Data Raw Data

People Identification

Module

Normalized

Data

Inference Result

Confirmation

Figure 4. The Software Diagram

3 Approach

We consider the people identification problem with a small number
of users as a classification problem. The system classifies the data
from sensors into groups. A group represents a user so the number
of groups equal to the number of users exists in the data training set.
When a user sit down on the chair, a set of data will be created. The
system will determine which group that this data set belongs to. By
this way, the system can recognize the user who is sitting beforehand.
We used Nearest Neighbor Search Algorithm to resolve this classi-
fication problem. The ”weight” used in the nearest neighbor search
algorithm are determined by Softmax Regression Model and Gradi-
ent Descent Algorithm. The softmax regression model is discussed
in subsection below.

3.1 Softmax Regression Model

Softmax Regression Model[4] is a supervised learning algorithm
used for multi-class classification. In Softmax Regression Model,
we have a training set {(x(1), y(1)), (x(2), y(2)), . . . , (x(n), y(n))}
of n labeled examples, where the input features are m dimensional
vector x(i) ∈ <m and the label y can take on k different values,
y(i) ∈ {1, 2, . . . , k}. Given a test input x, we want our hypothe-
sis to estimate the probability that P (y = j|x) for each value of
j = 1, 2, . . . , k. I.e., we want to estimate the probability of the class
label taking on each of the k different possible values. Thus, our hy-
pothesis will output a k dimensional vector (whose elements sum to
1) giving us our k estimated probabilities. Concretely, our hypothesis
hθ(x) takes the form:

hθ(x
(i)) =

2
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6
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Here, m dimensional vectors θ1, θ2, . . . , θk ∈ <m are the param-
eters of this model and θTi is the transpose vector of θi. Notice that
the term 1

Pk
j=1 e

θT
j

x(i) normalizes the distribution, so that it sums to

one. For convenience, we will also write θ to denote all the parame-
ters of our mode.
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θ =
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If we know the hθ function, we can determine the class label that
given input vector x belong to. That is the class label that have max-
imum estimated probability. But the hθ function is expressed by the
θ parameters, so we have to find all the θ parameters.
The cost function of Softmax Regression Model is shown in the equa-
tion below.

J(θ) = − 1

n

» n
X

i=1

k
X

j=1

Q(i, j) log
eθ

T
j x

(i)

Pk
l=1 e

θT
l
x(i)

–

Here, Q(i, j) is defined as follow:

Q(i, j) =



1 if y(i) = j
0 otherwise

In Softmax Regression, we also have:

P (y(i) = j|x(i); θ) =
eθ

T
j x

(i)

Pk
l=1 e

θT
l
x(i)

Now, the training is mean finding all θ parameters that minimize
the cost function. There are several methods to do it such as gradient
descent algorithm or limited-memory BFGS algorithm. In this paper,
we used gradient descent algorithm that is described below.

3.2 Gradient Descent Algorithm
The gradient descent algorithm[5] is a algorithm used to choosing θ
to minimize the cost function J(θ). It starts with some ”initial guess”
for θ, and that repeatedly change θ to make J(θ) smaller, until hope-
fully converge to a value of θ that minimizes J(θ). The gradient de-
scent algorithm repeatedly performs the update:

θj := θj − α
∂

∂θj
J(θ)

This update is simultaneously performed for all value of j. Here,
α is called the learning rate.

To using gradient descent algorithm to minimize the cost function
of softmax regression model, we need to compute the partial deriva-
tive of cost function J(θ). It is shown by the equation below.

∇θjJ(θ) = − 1

n

n
X

i=1

»

x(i)(Q(i, j) − P (y(i) = j|x(i); θ))

–

In particular, ∇θjJ(θ) is itself a m dimensional vector, so that its
l-th element is ∂

∂θjl
J(θ), the partial derivative of J(θ) with respect

to the l-th element of θj . So we can use it to compute the update
value of all parameters in softmax regression model.

But, take a look, if we take each of our parameter vectors θj , and

subtract fixed vector ψ from it, so that every θj is now replaced with
θj − ψ ( for every j = 1, 2, . . . , k), we have:

P (y(i) = j|x(i); θ) =
e(θj−ψ)T x(i)

Pk
l=1 e

(θl−ψ)T x(i)

=
eθ

T
j x

(i)

e−ψT x(i)

Pk
l=1 e

θT
l
x(i)

e−ψT x(i)
=

eθ
T
j x

(i)

Pk
l=1 e

θT
l
x(i)

It show that if the cost function J(θ) is minimized by some setting
of parameters (θ1, θ2, . . . , θk), then it is also minimized by (θ1 −
ψ, θ2 − ψ, . . . , θk − ψ) for any value of ψ. Thus, the minimizer of
J(θ) is not unique. To fix it, the cost function J(θ) is modified by
adding a weight decay term λ

2
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Pm
j=1 θ

2
ij which penalizes large

values of the parameters. Our cost function is now

J(θ) = − 1
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With this weight decay term (for any λ > 0), the cost function
J(θ) is now strictly convex, and is guaranteed to have a unique min-
imize solution. Also, the gradient descent algorithm is guaranteed to
converge to the global minimum. To apply the gradient descent al-
gorithm, we also need the partial derivative of this new definition of
J(θ). The partial derivate is shown below.

∇θjJ(θ) = − 1

n

n
X

i=1

»

x(i)(Q(i, j) − P (y(i) = j|x(i); θ))

–

+ λθj

By using gradient descent algorithm with this equation to mini-
mize the cost function J(θ), we will have a working implementation
of softmax regression model.

3.3 Nearest Neighbor Search Algorithm
Nearest neighbor search (NNS)[6][7], also known as proximity
search, similarity search or closest point search, is an optimization
problem for finding closest points in metric spaces. The problem
is: given a set S of points in a metric space M and a query point
q ∈ M , find the closest point in S to q. In many cases, M is taken to
be d-dimensional Euclidean space and distance is measured by Eu-
clidean distance. The Euclidean distance between points p and q is
the length of the line segment connecting them. In Cartesian coor-
dinates, if p = (p1, p2, . . . , pd) and q = (q1, q2, . . . , qd) are two
points in d-dimensional Euclidean space, then the distance from p to
q, or from q to p is given by:

dpq = dqp =
p

(q1 − p1)2 + (q2 − p2)2 + . . .+ (qd − pd)2

=

v

u

u

t

d
X

i=1

(qi − pi)2
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Now, if CP (q) is the closest point to q in set S, we have:

CP (q) = {p|p ∈ S; dpq =
n

min
i=1

dSiq}

3.4 Calculation Process
We have discussed about softmax regression model, gradient de-
scent algorithm and nearest neighbor search generally in subsections
above. In this subsection, we describe how we use those algorithms
in fact.
We use one accelerometer sensor, one light sensor and four pressure
sensors placed on a chair for people recognition, so we have eight
values of sensor data.

• Ax: The X-axis accelerometer value
• Ay: The Y-axis accelerometer value
• Az: The Z-axis accelerometer value
• Light: The light sensor value value
• A1: The first pressure sensor value
• A2: The second pressure sensor value
• A3: The third pressure sensor value
• A4: The fourth pressure sensor value

When a user sitting down to the chair, an array of 15 records, each
has 8 values

r = (Ax,Ay,Az, Light, A1, A2, A3, A4)

will be created. This array is called RA and it describes the informa-
tion of one sitting time of a user. In our data training set, there are 10
RA for one user. So if the number of user is k, the number of RA in
data training set is n = 10k.

RA = {r1, r2, . . . , r15}
We use nearest neighbor search with 8-dimensional Euclidean

space for this classification problem. But the Euclidean distance
function we use has a litter different to general function. Because
these eight sensor data affect to result in different ways, we modify
the Euclidean distance function like this:

dpq =

v

u

u

t

8
X

i=1

θi(qi − pi)2

The parameters θ1, θ2, . . . , θ8 is the ”weight” of each sensor data and
we use softmax regression model and gradient descent algorithm to
determine them. Our people identify process can be described as fol-
lowing:

When a user sit in the chair, a RA is created. We take the aver-
age of all records of this RA and the average of all records of all
RA in data training set and use softmax regression model to compute
the parameters used in nearest neighbor search algorithm.The gradi-
ent descent algorithm is implemented with learning rate α = 0.001
and λ = 0.001 to minimize the cost function in softmax regression
model. Finally, we use nearest neighbor algorithm with determined
parameters to classify the new RA to one of k class labeled. The re-
sult is the user whom this class labeled stand for. There are always
10 RA for one user in our data training set, but the data training set is

dynamic. When a user sit down to the chair, after the system receives
the confirmation from the user, in data training set, the oldest RA of
this user is replaced by the newest RA. By this way, the system can
adapt with the change of user’s sitting pattern.

4 Evaluation
We evaluated this system in two cases. In the first case, we evaluated
with a group of five people and in the other case, we evaluated with
a group of ten people. In both case, one person must sit in a chair
twenty times, ten for training and ten for testing. Figure 5 shows
the result of first case while Figure 6 shows the result of last one.
In the case of group of five people, we achieved an accuracy as 90
percentage and 72 percentage in the case of ten people.

0
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P5P4P3P2P1 Person

Accuracy

Figure 5. Accuracy for 5 people case

In the case of five people, there were three people who are iden-
tified with the accuracy as 100%. One people with the accuracy as
90%, it means that there was only one mistake.

With the achievement accuracy as 72% in the case of ten peoples,
this method certainly can be used in a small office or inside a house
with a small number of users.

5 Related Works
Masafumi Yamada et al.[9] have used 32 pressure sensors placed on
a chair to people recognition. They have tested with a group of eight
people who are required to sit 20 times, 19 for training and only one
for testing. The result is shown in the Figure 7. Their system does
not recognize user at the time user was sitting down but after few
seconds, when the values of sensor get steady.The value of sensors
were collected starting from a few seconds before the user starts sit-
ting until the values of the sensor get steady after sitting. From the
data they cut out two parts. One of them is the part during the user is
sitting down, labeled as ”Sitting part” . Another is the part after the
sensor value gets steady, labeled as ”Stable part”. The classifier used
is nearest neighbor method. Every testing data are classified to the
nearest training data. Used features are classified into four groups to
investigate how useful the information of pressure sensors is.
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Figure 6. Accuracy for 10 people case

• Feature Set1 (FS1): 32 sensors Ω values (32)
• Feature Set2 (FS2): sum of 32 sensors Ω values (1)
• Feature Set3 (FS3): time difference of FS1 (32)
• Feature Set4 (FS4): normalized sensor values of FS3 (1)

As we can see, the achieved accuracy in steady part is about 90% but
only 56% in the sitting part for average with a group of eight people.

Figure 7. Average Recognition Rates by Yamada’s Method

6 Conclusions and Future Works

We have proposed a people identification method based on sitting
patterns of user. This method used weak evidences collected by ac-
celerometer sensor, light sensor, and pressure sensor placed on a
chair to inference who is sitting on it. We considered this problem as
a classification problem and use nearest neighbor search algorithm
with ”weight” to resolve it. The ”weight” used in nearest neighbor
search algorithm is determined by softmax regression model while
the cost function is minimized by gradient descent algorithm. We

also presented the result of experiments which shown that this peo-
ple identification has the accuracy enough to be used in places which
have private properties such as inside of a house or a small office.

How to due with other evidences and what is the best way to place
sensor to a chair are the things to be discussed in the future. More-
over, the evolution of performance increasing the number of people
need to be studied. We also intend to implement a module to recog-
nize the posture of user or the user’s mood.
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Abstract.1  Predicting activities from data gathered with sensors 
gained importance over the years with the objective of getting a 
better understanding of the human body. The purpose of this paper 
is to show that predicting activities on an Android phone is 
possible. We take into consideration different classifiers, their 
accuracy using different approaches (hierarchical and one step 
classification) and limitations of the mobile itself like battery and 
memory usage. A semi-supervised learning approach is taken in 
order to compare its results against supervised learning. The 
objective is to discover if the application can be adapted to the user 
providing a better solution for this problem. The activities 
predicted are the most usual in everyday life: walking, running, 
standing idle and sitting. An android prototype, embedding the 
software MOA, was developed to experimentally evaluate the ideas 
proposed here. 

1 INTRODUCTION 

Recognizing human activities with sensors next to the body has 

become more important over the years, aiming to create or improve 

systems in elder care support, health/fitness monitoring, and 

assisting those with cognitive disorders. 

It is important to have systems that are practical for the user and 

that have the possibility to always be with them whilst not feeling 

strange or uncomfortable. Taking this into account we will attempt 

to use only one sensor instead of a, less practical but more 

accurate, system of distributed multi-sensors. 

The new generation of smart phones has incorporated many 

powerful sensors, such as acceleration sensors (i.e. 

accelerometers), GPS sensors etc. They give the opportunity to 

create a system that can always be next to the user and work in 

real-time. In this work we will focus on the motion sensor of the 

cell phone, accelerometer, in order to predict the activity that the 

user is performing, as was attempted previously by Bao & Intille 

[1].  

This problem will be treated as a classification problem using 

techniques of semi-supervised learning. This will be done in order 

to take advantage of existing examples (typically unlabeled) from 

the current user.  

Knowledge discovery systems are constrained by three main 

limited resources: time, memory and sample size. In traditional 
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applications of machine learning and statistics, sample size tends to 

be the dominant limitation. The problem of working with data 

streams is the arrival rate of the examples. When new examples 

arrive at a higher rate than they can be mined, the quantity of 

unused data grows without bounds as time progresses. 

By building a new Smartphone application we attempt to solve 

problems consistent with previous undertakings, such as: accuracy, 

cost, performance among others. We explore matters like: (1) the 

impact of the app on the phone’s battery lifetime; (2) how long 

should the interval to collect samples be in order to guarantee 

accurate classifications; (3) the time to create a model; and (4) the 

memory space needed. 

All software used is open-source so the experiments can be 

continued and the application can be improved.  

The aim of this work will be to create an application that adapt 

to each new user along time, learning his behavior and becoming 

more accurate. 

2 RELATED WORK 

Activity recognition is not new. Bao & Intille [1] created a system 

capable of recognizing twenty activities with bi-axial 

accelerometers positioned in five different locations of the user’s 

person. This work led to an important discovery, which was 

possible to get accurate results predicting activities just using 

acceleration values gathered by a sensor placed on the thigh or 

dominant wrist. Despite this work uses twenty activities the most 

common activities used in other works [2,9,17] are walking, 

running, sitting, standing, up and downstairs. 

Some research exists aiming to create a universal model that can be 

applied to any user. The idea is to use it in an Android application 

in order to measure the physical exercise of the user by predicting 

his activities [2].  This study uses three classification algorithms 

from WEKA (decision trees J48, logistic regression and multilayer 

neural networks) to induce models to predict user activities. Other 

studies, that also use the WEKA toolkit, implement common 

algorithms like Naïve Bayes, decision tables, K-nearest neighbors 

and SVM . 

The common activities that research tries to predict are walking, 

running, sitting, standing, up and downstairs. 

Gu et al. [3] tried to solve the activity recognition problem with 

techniques of semi-supervised learning using a large amount of 

unlabeled data, together with the labeled data, to build better 

classifiers. Because semi-supervised learning requires less human 

effort and gives higher accuracy, it is of great interest both in 

theory and in practice [4]. 
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One of the most important aspects of the research, in this field, 

is the classifiers’ accuracy and the difficulty of label new instances. 

Both Masud et al. [15] and Guan et al. [16] use ensemble methods 

to increase accuracy in partially labeled data (semi-supervised 

problems). A common thing in all the works is how they try to find 

the more accurate model, testing multiple classifiers with the same 

data. Authors like Kwapisz et al. [2] showed, when trying to solve 

this classification problem using decision trees, that the most 

important attribute to differentiate the activities is the acceleration 

they induce on the accelerometer. Domingos et al. [11] showed that 

decision trees like C4.5 could be outperformed by Hoeffding trees, 

and demonstrated their importance when dealing with streams and 

limited memory space. The biggest problem of decision trees is 

that they assume that all training examples can be stored 

simultaneously in main memory, and are thus severely limited in 

the number of examples they can learn from. Still, regarding the 

accuracy, the problem can be solved in a hierarchical way. 

Hierarchical classification splits the initial problem into simpler 

sub-problems. The objective is to have a tree in the end where tests 

are done in each node. The classes contained in different nodes 

from the same level of the tree should be independent [5] so there 

is no possible uncertainty when choosing the path.  It is expected to 

obtain more accurate classifiers by training them in the split data. 

For activity recognition, this can be done by classifying firstly 

whether the activity is motion or motionless and, in a second step, 

classifying it in lying, sitting, standing (if it was classified as 

motionless in the first step) or walking, gentle motion and posture 

translation (if it was classified as motion in the first step). These 

experiments came to the conclusion that rule-based reasoning can 

improve the overall accuracy proving the lustiness of this approach 

[6]. 

The main drawbacks of using such approaches in a mobile 

phone are the limited battery and memory. Experiments were 

carried out to determine how long the data samples provided by the 

cell accelerometer should be in order to obtain accurate 

classification. Some experiments were made and it was discovered 

that at least they need to be captured for 6s and the interval 

between them can be up to 10s [7]. These results are used in our 

experiments as described in section 4. Another thing that has 

impact on the cell phone, more specifically in its memory, is how 

the data is saved. Not all the data needs to be saved. Using sliding 

windows only the most recent data needs to be available [8]. The 

features of the raw accelerometer data that can be retrieved are the 

mean, the standard deviation, the energy and the correlation [9]. 

The usefulness of these features has already been demonstrated [1]. 

It allows saving both data and memory. 

In terms of mobile applications, DiaTrace [10] is a system 

developed to aid in sport activities. The authors do not explain how 

they carry out the classification. However they guarantee 95% of 

accuracy if the mobile phone is used in the trousers front pocket. 

This is an example of how the market demands this type of 

applications. 

3 METHODS 

The tests were made on Naïve Bayes and Hoeffding Trees [11]. 

These two algorithms were chosen because some studies showed 

that Naïve Bayes can predict equally as well as decision trees 

(Langley, Iba, & Thomas 1992; Kononenko 1990; Pazzani 1996) 

and Hoeffding trees can learn in a very small constant time what is 

of major importance since we are dealing with streams in a mobile 

context. 

The Naive Bayes algorithm is a classification algorithm based 

on Bayes rule and can often outperform more sophisticated 

classification methods. The Naive Bayes algorithm is based on 

conditional probabilities; it calculates a probability by counting the 

frequency of values and combinations of values in the historical 

data. Bayes' Theorem finds the probability of an event occurring 

given the probability of another event that has already occurred. It 

assumes that the attributes X1…Xn are all conditionally 

independent of one another, given the target variable Y. The value 

of this assumption is that it simplifies dramatically the 

representation of P(X|Y), and the problem of estimating it from the 

training data [12]. An important advantage of this algorithm is the 

possibility to calculate the required probabilities in one pass over 

the training set. Additionally, it is able to obtain good classification 

performance even when trained in a small amount of data. We can 

conclude that this classifier can be trained on an efficient way, 

gathering the probabilities of each attribute 

Hoeffding trees [13] operate by collecting, for each leaf node, 

sufficient statistics of the training instances each leaf contains. 

Periodically, these leaves are checked to compare the relative 

merits of each candidate attribute for splitting. The Hoeffding 

bound, or similar metric, is used to determine when a candidate is 

better than the others. At this point the leaf is split on the best 

attribute, allowing the tree to grow. Typically, information gain is 

used to rank the merits of the split candidates, although other 

metrics could be used. In the case of discrete attributes, it is 

sufficient to collect counts of attribute labels relative to class labels 

to compute the information gain afforded by a split. There are 

some variations of Hoeffding Trees, based on VFDT (Very Fast 

Decision Tree learner) which is a high-performance data mining 

system [11]. It is effective in taking advantage of massive numbers 

of examples by using a very small constant time per example. 

Since we are working with a mobile phone the biggest advantage is 

that Hoeffding trees do not store any examples (or parts thereof) in 

main memory, requiring only a space proportional to the size of the 

tree and the associated sufficient statistics [11]. 

The novelty of our work is the creation of the Android 

application that records data from the accelerometer. It uses a semi-

supervised learning algorithm to process data with a model 

previously learned. This model is used to label the unlabeled data 

in real-time. This new labeled data can be used to train future 

models that fit over the user. In the semi supervised approach we 

defined a threshold of 70% (value that we assumed to be a good 

percentage of certainty for a classification) which means that we 

add to the training file the instances classified with 70% or more of 

certainty. We can also define the number of these new instances 

that we need to gather in order to create a new model. The older 

instances are deleted in order to maintain the size of the file. 

4 AN ANDROID PROTOTYPE 

We have implemented an Android application that records data 

from the accelerometer. We use: (1) sequence-based sliding 

windows [8] in order to save memory; and (2) the method of duty 

cycles [7] in order to save battery. 

In sequence-based sliding windows an amount of data is 

defined. The file will have only the amount of data that the 

sequence-based sliding window allows. If new data is added it 
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replaces the oldest data in order to keep the size stipulated by the 

window. 

In the duty cycles, 6s of data is needed in order to get enough 

data so an accurate classification can be achieved. To proceed with 

the classification we have 10s before retrieving new data. It means 

that the data from the accelerometer does not need to be fetched all 

time, saving battery with less operations of the app running. To 

sum up, we record data for 6s. Then, an instance is created with an 

average of the collected values. Finally, it is classified on the next 

10s. This cycle is repeated along time. 

4.1 EXPERIMENTAL SETUP 

Before testing the application some decisions had to be made in 

order to have a controlled environment so we knew which result 

we were expecting for each test done. 

The placement of the mobile was an important issue. Without 

having the option of placing sensors in different parts of the human 

body we have chosen the trousers’ front pocket [14] to conduct all 

experiments. So there is recorded data with the mobile in a vertical 

and horizontal position inside the pocket. 

To create the models, data from two persons was used. This data 

contained the average of the values recorded by an accelerometer 

for several hours doing, only, activities of walking, running, 

standing idle and sitting, being the waking activity the one with 

more recorded instances. In the total approximately 27 thousand 

instances were used.  

The unlabeled data (files from approximately 16 thousand to 30 

thousand instances) was not used to create the model. It belongs to 

the two people that contributed with data to create the model. 

There is, also, data from a third person that was not used for 

learning the models. It was used to evaluate the semi-supervised 

learning approach. 

We needed to choose between timestamp and sequence-based 

sliding windows depending whether the window length is defined 

according to a predefined interval or a predefined amount of data. 

We have chosen sequence-based sliding windows because we 

wanted to keep the number of instances controlled and with a time 

interval that is impossible because the number of data elements in 

the window may vary over time.  

A threshold of 70% probability is used to proceed with semi-

supervised learning as explained in section 3. This allows creating 

new models by appending to previous data the recent labeled data 

when classified with 70% of certainty, at least. 

4.2 EXPERIMENTS AND RESULTS 

Previously, labeled data from three different persons was recorded. 

The data contained four activities: walking, running, sitting and 

standing idle. Using MOA, two different approaches were taken. 

Firstly, models were induced using both Naïve Bayes and 

Hoeffding Tree. The classifiers were tested on unlabeled data from 

one person (Table 1).  

 

Table 1. Classifiers’ accuracy. 

 Naïve Bayes Hoeffding Tree 

Accuracy 92.00% 94.78% 

 

Secondly, a hierarchical approach with two levels was also 

carried out using the same classifiers. The hierarchical approach 

has two classifications: (1) The first one classifies the data into 

Dynamic or Static whether the activities involve motion or not, 

respectively (Table 2); (2) Then, in the second classification, a 

model was built on each category so we could proceed to the 

classification on Walking or Running on the Dynamic category, 

and Sitting or Standing Idle on the Static one (Table 3). 

Table 2. Classifiers’ accuracy in the first level of the hierarchical approach. 

Dynamic vs. Static Naïve Bayes Hoeffding Tree 

Accuracy 82.11 % 99.85% 

 

Table 3. Classifiers’ accuracy in the second classification of the 

hierarchical approach. 

 Naïve Bayes Hoeffding Tree 

Running, walking 76.25% 99.05% 

Sitting, standing idle 99.83% 99.93% 

 

To test the effectiveness of the classification, unlabeled data of a 

person, which was not used for training the classifier, was used. 

Here are the results for the walking activity – Table 4.  

 

Table 4. Accuracy for the walking activity using as test set data from a 

person without data on the training sets 

 

 One-step 

classification 

Hierarchical 

1st classif. 

Hierarchical 

2nd classif. 

Naïve Bayes 86,37% 90,17%  84,27% 

Hoeffding Tree 67,65% 94,04% 88,09% 

 

These results only show that Hoeffding Tree is better than 

Naïve Bayes for the walking activity on a hierarchical approach. 

However, Naïve Bayes gives better results on the one-step 

approach (Table 4). Further tests were needed for the remaining 

activities. Additionally, a semi-supervised approach was also used, 

besides the supervised one described above, in order to evaluate the 

usefulness of using unlabeled data from the user that is being 

tested. 

In order to adapt the model to the normal user of the cell phone 

a threshold of 70% was created, as described in section 3. This 

meant that data labeled with at least 70% of certainty would be 

recorded on the training file of the classifier, so a new model, more 

suitable to the user, could be generated. This approach is compared 

against the supervised approach (Figure 1). It is easier to check the 

better accuracy when using the semi-supervised approach. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 Accuracy of one step classification using both supervised and 

semi-supervised learning. 

 

After doing the hierarchical classification (Figure 2 and 3) the 

labeled data was checked by visual inspection and it was easy to 
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observe that Hoeffding Tree tend to label data on the first 

classification as Dynamic (probably because the dataset is 

unbalanced and the Dynamic class is the majority one: there are 

about 15000 Dynamic instances and about 8000 Static ones). Naïve 

Bayes seems more balanced when labeling new data in the first 

classification of the hierarchical approach. 

 

At last we tested how using the two classifiers together would 

affect the classification (Figure 4). 

 

 

 

 

The balance characteristic of Naïve Bayes mentioned before can 

be verified in Figure 5, giving better results when used in the first 

classification. The tendency of Hoeffding Trees to classify, in the 

first step, the data as a Dynamic movement has influence on the 

second classification where Naïve Bayes has difficulties to label 

data because it gets lots of Static labeled data as Dynamic data 

from the first step. Overall better accuracy is achieved when using 

the Naïve Bayes classifier on the first classification (Dynamic or 

Static movement) and Hoeffding Tree on the second classification.  

The application had also concerns about both the battery and the 

memory usage. In order to test the battery usage, a stress situation 

where the app did both the hierarchical classification and the one 

step classification was created. In order to do it two models were 

created using the data of about 23.000 lines of labeled data, and 

doing the classification of 10 unlabeled instances. This experiment 

told us that the battery usage needs a maximum of 600.0mW for 

the CPU and between 500mW and 600mW for the LCD, which 

gives a total between 1100 and 1200mW on hierarchical 

classification. The one step classification only creates one model. 

The battery usage needs a maximum of 526mW for the CPU, the 

LCD needs the same power as the hierarchical approach, of course. 

Running the application five times, in a row, we got an energy 

usage of 120.8J for the CPU in hierarchical classification. However 

in one step classification we get a total of 110.3J. 

Creating models and classifying about 10 instances took almost 

60s which is a good time since we have only to classify 1 instance 

every 16s.  

In terms of memory, the prototype is about 3Mb, and the files 

used for training the model having about 23000 lines are 1.466kB 

each. At most we will have the existence of three files for training 

(hierarchical approach). These files will grow because we defined a 

limit of 30000 instances for the training set (sequence-based 

window), which means that until we reach this limit none of the old 

training data will be erased and new data is added. When we reach 

the 30000 instances the sequence-based window will keep the size 

of the file. Whenever new labeled data from the user arrives (using 

the aforementioned 70% threshold) it will substitute the oldest data 

in order to have a semi-supervised learning approach.  

The accuracy is not the only indicator of the classifiers’ 

performance. Precision and recall are also important. The 

technique with higher accuracy might not be the one with the best 

balance between precision and recall. In our experiments we 

noticed that Hoeffding Trees have a better balance between 

precision and recall than Naïve Bayes. 

Figure 2. Classifiers' accuracy on final step of hierarchical 

classification with a supervised learning approach. 

Figure 3. Classifiers’ accuracy on final step of hierarchical 

classification with a semi-supervised learning approach. 

Figure 4. Classifiers’ accuracy on final step of hierarchical 

classification with a supervised learning approach, using different 

classifiers for each step. 

Figure 5. Classifiers’ accuracy on final step of hierarchical 

classification with a semi-supervised learning approach, using 

different classifiers for each step. 
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5 CONCLUSIONS AND FUTURE WORK 

The encouraging results of the experiments lead us to affirm that a 

step forward has been taken in the study of activity classification. 

The most difficult activities to distinguish are walking and 

running because it is not clear where to draw the line between these 

two activities. 

To achieve good results the techniques do not need to be too 

complex, like it was shown using Naïve Bayes. A fair conclusion 

after analyzing the figures is that hierarchical approach gives better 

results with Naïve Bayes doing the first classification and 

Hoeffding Tree dealing with the final one. With less complex 

techniques less power of the mobile is needed, leading to a minor 

impact on the classification performance. So, if Naïve Bayes does 

not decrease the accuracy it is better to use it in order to save 

memory and battery. 

The battery usage confirms that the app can be used non-stop. It 

would be thrilling and of greater convenience to create a way that 

could swap classification techniques when the battery was low so it 

could be saved and the application did not have to stop. Changing 

from hierarchical classification to one step classification would 

have a maximum impact of 2% on the accuracy using Hoeffding 

tree as classifier. 

The model used only has to be created when the application 

starts working. It is used for classifying until the app is shut down. 

It has only to classify one instance every 16s which is enough to do 

it, so the duty cycles work perfectly. 

Regarding the memory usage a limit on the training files can be 

created, when this limit is reached the older data can be erased and 

new data added. This allows the adaptation of the application to 

new users as long as the application is being used by these new 

users. 

The application can be improved by making possible to wear 

the mobile on other location, testing other classifiers or changing 

the way the data is processed. 

New tests can be made using data from people with mobility 

constraints. Improving the app so it can adapt to this kind of people 

can be important if an accurate prediction can be made. Studies of 

patients with diseases that tend to degrade the ability to move can 

be accomplished to prevent, for example, falls or just to study how 

the movements change. This prevention can also be applied to 

elder people. 

With this knowledge, people who practice sport can also 

benefit. For example, understanding how their body posture can be 

corrected in order to achieve better results. 

This is just the beginning of an application that can be expanded 

in order to provide a better intimate experience between users and 

mobile phones.  

ACKNOWLEDGEMENTS 

This work is funded by the ERDF through the Programme 

COMPETE and by the Portuguese Government through FCT - 

Foundation for Science and Technology, project KDUS ref. 

PTDC/EIA-EIA/098355/2008. 

 

REFERENCES 

[1] L. Bao & S. S. Intille (2004). “Activity Recognition from User-

Annotated Acceleration Data”, LNCS 3001, Springer, pp. 1-17. 

[2] J. R. Kwapisz, G. M. Weiss, and S. A. Moore, “Activity 

Recognition using Cell Phone Accelerometers,” SIGKDD 

Explorations, vol. 12, no. 2, pp. 74-82, 2010. 

[3] Tao Gu, Zhanqing Wu, Xianping Tao, Hung Keng Pung, and Jian 

Lu. epSICAR: An Emerging Patterns based Approach to Sequential, 

Interleaved and Concurrent Activity Recognition. In Proc. of the 7th 

Annual IEEE International Conference on Pervasive Computing and 

Communications (Percom '09), Galveston, Texas, March 9–13, 

2009. 

[4] X. Zhu, Semi-Supervised Learning Literature Survey, Tech. report,  

Computer Sciences, University of Wisconsin-Madison, USA, 2005. 

[5] A. C. F. Coster, “Classification of basic daily movements using a 

triaxial accelerometer,” Medical & Biological Engineering, pp. 679-

687, 2000. 

[6] M. Schneider, M. Velten, and J. Haupert, “The ObjectRules 

Framework - Providing Ad Hoc Context-Dependent Assistance in 

Dynamic Environments,” 2010 Sixth International Conference on 

Intelligent Environments, pp. 122-127, Jul. 2010. 

[7] N. S. Y. Wang, J. Lin, M. Annavaram, Q. A. Jacobson, J. Hong, B. 

Krishnamachari, “A Framework of Energy Efficient Mobile Sensing 

for automatic user state recognition”, pp. 179-191, 2009. 

[8] B. Babcock and M. Datar, “Sampling from a moving window over 

streaming data,” of the thirteenth annual ACM-SIAM, 2002. 

[9] N. Ravi, N. Dandekar, and P. Mysore, “Activity recognition from 

accelerometer data,” Proceedings of the National, pp. 1541-1546, 

2005. 

[10] G. Bieber, J. Voskamp, and B. Urban, “Activity Recognition for 

Everyday Life on Mobile Phones,” Universal Access in HCI, Part 

II, HCII 2009, LNCS 5615, pp. 289-296, 2009. 

[11] P. Domingos & G. Hulten (2000). Mining high-speed data streams. 

Proceedings of the sixth ACM SIGKDD international conference on 

Knowledge discovery and data mining - KDD’00, 71-80. New York, 

New York, USA: ACM Press. doi:10.1145/347090.347107. 

[12] T. Mitchell (1997). Machine Learning, McGraw Hill. 

[13] Holmes, K. Richard, B. Pfahringer (2005). Tie-breaking in 

Hoeffding trees. In proceedings of the Second International 

Workshop on Knowledge Discovery from Data Streams, Porto, 

Portugal, 2005. 

[14] S. Sprager and D. Zazula, “A cumulant-based method for gait 

identification using accelerometer data with principal component 

analysis and support vector machine,” WSEAS Transactions on 

Signal Processing, vol. 5, no. 11, pp. 369–378, 2009. 

[15] M.M. Masud, J. Gao, L. Khan, J. Han and B. Thuraisingham, 

2008. “A practical approach to classify evolving data streams: 

Training with limited amount of labeled data”. Proceedings of the 

8th International Conference on Data Mining, December 15-19, 

2008, Pisa, Italy, pp: 929-934. 

[16] D. Guan , W. Yuan , Y. Lee , A. Gavrilov , S. Lee, “Activity 

Recognition Based on Semi-supervised Learning”, Proceedings of 

the 13th IEEE International Conference on Embedded and Real-

Time Computing Systems and Applications, p.469-475, August 21-

24, 2007.  

[17] T. Brezmes, J. Gorricho, J. Cotrina, “ Activity Recognition from 

accelerometer Data on a Mobile Phone”, Lecture Notes in Computer 

Science, 2009, Volume 5518, Distributed Computing, Artificial 

Intelligence, Bioinformatics, Soft Computing, and Ambient Assisted 

Living, Pages 796-799 

42



Applying Neural Networks for Concept Drift Detection
in Financial Markets

Bruno Silva 1 and Nuno Marques 2 and Gisele Panosso 3

Abstract. Traditional stock market analysis is based on the assump-
tion of a stationary market behavior. The recent financial crisis was
an example of the inappropriateness of such assumption, namely by
detecting the presence of much higher variations than what would
normally be expected by traditional models. Data stream methods
present an alternative for modeling the vast amounts of data arriv-
ing each day to a financial analyst. This paper discusses the use of
a framework based on an artificial neural network that continuously
monitors itself and allows the implementation on a multivariate fi-
nancial non-stationary model of market behavior. An initial study is
performed over ten years of the Dow Jones Industrial Average index
(DJI), and shows empirical evidence of concept drift in the multivari-
ate financial statistics used to describe the index data stream.

1 INTRODUCTION

Data streams are generated naturally within several domains. Net-
work monitoring, web mining, telecommunications data manage-
ment, stock-market analysis and sensor data processing are appli-
cations that have vast amounts of data arriving continuously. In such
applications, the process may not be strictly stationary, i.e., the target
concept may change over time. Concept drift means that the concept
about which data is being collected may shift from time to time, each
time after some minimum permanence [6].

In this paper we address the detection and analysis of concept drift
in financial markets by employing a methodology based on Artificial
Neural Networks (ANN). ANN are a set of biologically inspired al-
gorithms and well-established data mining methods popular for tech-
nical market analysis and price predictions. We are currently under-
going a wider research on using ANN in Ubiquitous Data Mining.
This work, in essence, is a real-world application of a mechanism to
detect concept drift while processing data streams. The motivation
for this approach in the financial field can be easily explained. Math-
ematical finance has made wide use of normal distributions in stock
market analysis to maximize return rates, i.e., they assume station-
ary distributions, which are easier to understand and work well most
of the times. However, this traditional approach neglects big heavy-
tails, i.e.,huge asset losses, in the distributions and their potential risk
evaluation [11, 12]. This is where the detection of drifting from this
normal behavior is of critical importance to reduce investment risk in
the presence of non-normal distribution of market events.
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The main contributions of this work are: (i) a drift detection
method based on the output of Adaptive Resonance Theory (ART)
networks [7] which produce aggregations (or data synopsis in some
literature) of d-dimensional data streams. These fast aggregations
compress a, possibly, high-rate stream while maintaining the intrinsic
relations within the data. A fixed sequence of consecutive aggrega-
tions is then analyzed to infer concept drift in the underlying distri-
bution – Section 2 ; (ii) an application of the previous scheme to the
stock market, namely to the Dow Jones Industrial index (DJI), using
a stream of with a chosen set of statistical and technical indicators.
The detection of concept drift is performed over an incoming stream
of these observations –Section 3.

These contributions adhere to the impositions of data stream mod-
els in [8], namely: the data points can only be accessed in the order
in which they arrive; random access to data is not allowed; memory
is assumed to be small relatively to the number of data points, thus
only allowing a limited amount information to be stored. Therefore,
all of the additional indicators are computed using sliding windows,
thus only needing a small subset of data kept in memory. This is also
true for the number of aggregations needed to compute the concept
drift.

At the end of the paper, Section 4, discussion of the results are
made together with final conclusions.

2 METHODOLOGY
The presented methodology for drift detection comprises two mod-
ules. The first module uses an ART network that receives the incom-
ing stream and produces aggregations, or data synopsis, compressing
the data and retaining the intrinsic relationships within the distribu-
tion (Section 2.1). This module feeds a second module that takes a
fixed set of these aggregations and through simple computations pro-
duces an output that can be used to detect concept drift.

2.1 Online Data Aggregation
One should point out that algorithms performing on data streams are
expected to produce “only” approximated models [6], since the data
cannot be revisited to refine the generated models. The aggregation
module is responsible for the online summarization of the incom-
ing stream and processes the stream in blocks of size S. For each S
observations q representative prototypes of data are created, where
q � S. This can be related to an incremental clustering process
that is performed by an ART network. Each prototype is included
in a tuple that stores other relevant information, such as the number
of observations described by a particular prototype and the point in
time that a particular prototype was last updated. These data struc-
tures were popularized in [1] and called micro-clusters.
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Hence, we create q “weighted” prototypes of data stored in tuples
Q = {M1, ...,Mj , ...,Mq}, each containing: a prototype of data
Pj ; the number of inputs patterns Nj assigned to that prototype and
a timestamp Tj that contains the point in time that prototype was
last accessed, hence Mj = {Pj , Nj , Tj}. The prototype together
with the number of inputs assigned to it (weighting) is important to
preserve the input space density if one is interested in creating of-
fline models of the distribution. The timestamp allows the creation
of models from specific intervals in time.

ART [7] is a family of neural networks that develop stable recog-
nition categories (clusters) by self-organization in response to arbi-
trary sequences of input patterns. Its fast commitment mechanism
and capability of learning at moderate speed guarantees a high ef-
ficiency. The common algorithm used for clustering in any kind of
ART network is closely related to the k-means algorithm. Both use
single prototypes to internally represent and dynamically adapt clus-
ters. The k-means algorithm clusters a given set of input patterns into
k groups. The parameter k thus specifies the coarseness of the parti-
tion. In contrast, ART uses a minimum required similarity between
patterns that are grouped within one cluster. The resulting number
k of clusters then depends on the distances (in terms of the applied
metric) between all input patterns, presented to the network during
training. This similarity parameter is called vigilance ρ. K-means is
a popular algorithm in clustering data streams, e.g., [4], but suffers
from the problem that the initial k clusters have to be set either ran-
domly or through other methods. This has a strong impact on the
quality of the clustering process. On the other hand, ART networks
do not suffer from this problem.

More formally, a data stream is a sequence of data items (ob-
servations) x1, ..., xi, ..., xn such that the items are read once in
increasing order of the indexes i. If each observation contains a
set of d-dimensional features, then a data stream is a sequence of
Xd

1 , ..., X
d
i , ..., X

d
n vectors. We employ an ART2-A [3] network spe-

cially geared towards fast one-shot training, with an important mod-
ification given our goals: constrain the network on a maximum of q
prototypes. It shares the basic processing of all ART networks, which
is based on competitive learning. ART requires the same input pat-
tern size for all patterns, i.e., the dimension d of the input space where
the clusters regions shall be placed. Starting with an empty set of pro-
totypes P d

1 , ..., P
d
j , ..., P

d
q each input pattern Xd

i is compared to the
j stored prototypes in a search stage, in a winner-takes-all fashion.
If the degree of similarity between current input pattern and best fit-
ting prototype WJ is at least as high as vigilance ρ, this prototype is
chosen to represent the micro-cluster containing the input. Similarity
between the input pattern i and a prototype j is given by Equation 1,
where the distance is subtracted from one to get SXi,Pj = 1 if input
and prototype are identical. The distance is normalized with the di-
mension d of an input vector. This keeps measurements of similarity
independent of the number of features.

SXi,Pj = 1−

√√√√1

d

d∑

n=1

(Xn
i − Pn

j )2 (1)

The degree of similarity is limited to the range [0, 1]. If similarity
between the input pattern and the best matching prototype does not
fit into the vigilance interval [ρ, 1], i.e., SXi,Pj < ρ, a new micro-
cluster has to be created, where the current input is used as the pro-
totype initialization. Otherwise, if one of the previously committed
prototypes (micro-clusters) matches the input pattern well enough, it
is adapted by shifting the prototype’s values towards the values of the
input by the update rule in Equation 2.

P
(new)
J = η ·Xi + (1− η) · P (old)

J (2)

The constant learning rate η ∈ [0, 1] is chosen to prevent proto-
type PJ from moving too fast and therefore destabilizing the learning
process. However, given our goals, i.e., to perform an adaptive vector
quantization, we define η dynamically in such a way that the mean
quantization error of inputs represented by a prototype is minimized.
Equation 3 establishes the dynamic value of η, where NJ is the cur-
rent number of assigned input patterns for prototype J . This way, it
is expected that the prototypes converge to the mean of the assigned
input patterns.

η =
NJ

NJ + 1
(3)

This does not guarantee the convergence to local minimum, how-
ever, according to the adaptive vector quantization (AVQ) conver-
gence theorem [2], AVQ can be viewed as a way to learn prototype
vector patterns of real numbers; it can guarantee that average synap-
tic vectors converge to centroids exponentially quickly.

Another needed modification arises from the fact that ART net-
works, by design, form as much prototypes as needed based on the
vigilance value. At the extremes, ρ = 1 causes each unique input to
be encoded by a separate prototype, whereas ρ = 0 causes all inputs
to be represented by a single prototype. Therefore, for decreasing
values of ρ coarser prototypes are formed. However, to achieve ex-
actly q prototypes solely on a manually tuned value of ρ is a very
hard task, mainly due to the input space density, that can change over
time, and is also different from application to application.

To overcome this, we make a modification to the ART2-A algo-
rithm to impose a restriction on creating a maximum of q proto-
types and dynamically adjusting the vigilance parameter. We start
with ρ = 1 so that a new micro-cluster is assigned to each arriving
input vector. After learning an input vector, a verification is made to
check if q = j + 1, where j is the current number of stored micro-
clusters. If this condition is met, then to keep only q we need to merge
the nearest pair of micro-clusters. Let Tr,s = min{‖Pr − Ps‖2 :
r, s = 1, ..., q, r 6= s} be the minimum Euclidean distance between
prototypes stored in micro-clustersMr andMs. We merge the two
micro-clusters into one:

Mmerge = {Pmerge, Nr +Ns,max{Tr, Ts}} (4)

with the new prototype being a “weighted” average between the
previous two:.

Pmerge =
Nr

Nr +Ns
Pr +

Ns

Nr +Ns
Ps (5)

With d-dimensional input vectors, Equation 1 defines a hyper-
sphere around any stored prototype with radius r = (1 − ρ) ·

√
d.

By solving this equation in respect to ρ, we update the vigilance pa-
rameter dynamically with Equation 6, hence ρ(new) < ρ(old) and the
radius, consequently, increases.

ρ(new) = 1− Tr,s√
d

(6)

Our experimental results show that this approach is effective in
providing a summarization of the underlying distribution within the
data streams. The inclusion of these results is out of the scope of this
paper.

We must point out that the aggregation module produces more in-
formation that it is actually necessary for the concept drift detection,
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namely the weighting of the prototypes and the timestamps. This
module is an integrating part of a larger framework that also gen-
erates offline models of the incoming stream for specific points in
time.

2.2 Detecting Concept Drift
Our method assumes that if the underlying distribution is stationary
that the error-rate of the learning algorithm will decrease as the num-
ber of samples increases [5]. Hence, we compute the quantization
error at each aggregation phase of the ART network and track the
changes of these errors over time.

We use a queue B of b aggregation results, such that B =
{Ql, Ql−1, ..., Ql−b+1}, where Ql is the last aggregation obtained.
For each Ql that arrives, we compute the average Euclidean distance
between each prototype Pi in Ql and the closest one in Bl−1 =
{Ql−1, ..., Ql−b+1}. Equation 7 formalizes this Average Quantiza-
tion Error (AQE) computation for the lth aggregation, where ‖ · ‖2
is the Euclidean distance and q is the number of prototypes in Ql by
definition. This computes the error of the last aggregation in “quan-
tifying” previous aggregations in a particular point in time.

AQE(l) =
1

q

q∑

i=1

min( ‖ Pi − Pj ‖2, ∀Pj ∈ Bl−1 ) (7)

By repeating this procedure over time, we obtain a series of errors
that stabilizes and/or decreases when the underlying distribution is
stationary and presents increases on this curve when the underlying
distribution is changing, i.e., concept drift is occurring. This series of
errors is the drift curve.

Larger values of b are used to detect abrupt changes in the un-
derlying distribution, whereas to detect gradual concept drift a lower
value should be adopted. We exemplify the automatic concept drift
detection in this drift curve using a moving average in Section 3.2.

3 APPLICATION TO DOW JONES
INDUSTRIAL

We present an application of the previous methodology to the stock
market, namely to the Dow Jones Industrial index (DJI). Instead of
using daily prices of several stocks that compose the DJI, our ap-
proach to this problem uses the DJI daily index values themselves
and other computed statistical and technical indicators, which are ex-
plained in Section 3.1. We make extensive use of moving averages,
as they reduce the short term volatility of time series and retain in-
formation from previous market events; another statistical indicator
is the Hurst index [9], defined as a function to uncover changes in the
direction of the trend of a set of values in time. We believe that these
indicators, together with the index value, can provide a multi-variate
insight to hidden and subtle changes in the normality of financial
events and be used to assess the risk of investment at any point in
time, thus lowering exposure to risk.

This application makes use of data gathered from the period com-
prised between the 1st of January of 2001 to the 31st of December
of 2011, in a total of 2767 observations.

3.1 Variable Selection and Generated Data Stream
The data gathered was composed by a set of technical variables in-
cluding different index values for one trading day like Open, Close,

Figure 1. Hierarchical clustering of variables produced by VARCLUS.

High and Low values. From these we chose the lowest daily price
(PX LOW) because it provides better insight to the risk of a fall.
Other available technical indicator was the trading Volume.

In terms of statistical indicators, we initially considered a large
number of them, like moving averages (MA) from 20 to 180 trading
days, relative numbers, i.e., the DJI index value divided by moving
averages (AVG), price fluctuation and Hurst index. However, it was
important to reduce the number of variables because redundant vari-
ables can reduce the model efficiency. For this purpose we performed
an analysis with the VARCLUS procedure (SAS/STAT).The VAR-
CLUS procedure can be used as a variable-reduction method. The
VARCLUS procedure divides a set of numeric variables into dis-
joint or hierarchical clusters through principal component analysis.
All variables were treated as equally important. VARCLUS created
an output was used by the TREE procedure to draw a tree diagram
of hierarchical clusters (SAS/STAT R©9.1 User’s Guide p. 4797). The
tree diagram is depicted in Figure 1. We can observe in the hier-
archical clustering that the price variables and moving averages are
correlated, so it was only chosen PX LOW of Cluster 1. In Cluster
2 all variables were selected because, although they are correlated,
they measure different characteristics. In the case of relative num-
bers different averages were selected because it is interesting to see
the differences between the analysis of short, medium and long term.
Finally in Cluster 3 and Cluster 4 just Hurst index and price fluctu-
ation appeared, because they are not correlated with any other vari-
able, so these variables were included in the final data set.

Hence, the complete set of features in the data stream is the fol-
lowing:

PX LOW: Minimum daily price;
PX VOLUME: Volume of daily business;
IX HURST: Hurst index computed for 30 days;
IX CAP FLUTUATION: PX LOW(t)/ PX LOW (t 1). This vari-

able represents price fluctuation for one day interval;
AVG 20: PX LOW / 20-day moving average. This variable repre-

sents the relative number of current price divided by the 20-day
Moving Average. This shows whether the current price is cheap,
average value, expensive or really expensive. The same applies to
the next indicators but within other time frames;
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AVG 30: PX LOW / 30-day moving average;
AVG 60: PX LOW / 60-day moving average;
AVG 100: PX LOW / 100-day moving average;
AVG 120: PX LOW / 120-day moving average;
AVG 180: PX LOW / 180-day moving average;

The dataset is depicted in Figure 2, where the behavior of all vari-
ables can be seem. This data is our data stream. The stream comprises
10 features, e.g., a 10-dimensional stream.

Figure 2. Variables of the data stream used in the presented application. It
comprises technical and statistical indicators (description in text).

3.2 Concept Drift in the Dow Jones Industrial
The methodology presented in Section 2 was applied to the above
data. It is converted into a data stream by taking the data input or-
der as the order of the streaming. All features were previously nor-
malized to the range [0, 1] so they have equal importance in the
Euclidean distances used to process them. The largest moving av-
erage indicator computed was over 180 days. Therefore, only after
the 180th observation can the stream be presented to the algorithm.

However, since we are dealing with financial time-series, it is im-
portant to retain the time dependency of the sequence of observa-
tions. Therefore, in this application, we use a sliding-window of 100
trading days, i.e., approximately a trimester of trading as input to
each aggregation phase. Note that a year of trading has approxi-
mately 260 days. This means that the stream is processed in blocks
of 100 observations that are kept in a queue. For each new observa-
tion that arrives the oldest in the queue is discarded and the new one
added. The parameterization used was the following:

Block size: S = 100;
Number of micro-clusters: q = 10;

Concept drift buffer size: b = 15

The result of the procedure of Section 2.2 applied to the data
stream is presented in Figure 3. Each point of the series corresponds
to the error of the model for a particular trading day, thus provid-
ing possible indications of drifting. It can be seen an overall shape
of a curve that indicates the drift over time. Since this drift is being
computed for every trading day, the “noise” around the curve is con-
sidered normal since it is affected by the daily volatility of the index
values.

To obtain a “clean” curve we apply a convolution filter along this
drift series of the same size as b, i.e., 15 days. An alarm scheme is
created through the generation of an empirical moving average of 60
days performed over the drift series. The cleaned drift curve and its
moving average are depicted in Figure 4a).

We then compare the differences between the drift series and its
moving average obtaining a line that oscillates around zero. We call
this line the drift trend, shown in Figure 4b). Whenever the drift se-
ries has values lower than its moving average we are in a descending
trend. This is reflected in the drift trend with values lower than zero.
Whenever the moving average is crossed by the drift series it signals
a shift in the trend and the drift trend crosses zero. This reasoning to
detect trends is also very popular in financial technical analysis. In
this context, the 60 trading days moving average reflects the intuitive
notion of long-term “decreasing” or “increasing” trend of the drift.

All plots in Figure 4 are aligned in time for easy comparison. Fig-
ure 4c) shows the time series of PX LOW, i.e., the DJI index, that we
compare to the detection of drift performed.

4 DISCUSSION AND CONCLUSIONS
Based on experiments we found that a tenth of prototypes relative
to the number of observations are sufficient in most applications to
represent them adequately, hence, q = 10. Usage of higher values
of q did not improve the results with the additional problem of in-
creased computational time. Additionally, since we are both inter-
ested in abrupt and gradual drift detection we used a moderate sized
buffer of aggregations (b = 15) to compute the series of quantifi-
cation errors. During our experiments we found that this value was
appropriate for the established goals.

By inspecting Figure 4 and comparing the drift trend with the be-
havior of the DJI index we can make two important observations: (i)

Figure 3. Concept drift series obtained through the methodology in
Section 2.2 computed for each trading day.
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Figure 4. a) Cleaned drift curve and its moving average. b) The trend drift curve is used to automatically detect drifting. c) The DJI index time series (PX
LOW variable).

the drift trend crossed zero before the market crash of 2008 (around
day 1500). It appears that the concept that was being learned changed
sometime before the crash occurred. (ii) it may be reasonable to as-
sume that in periods of normality the long-term tendency of these
indexes is upwards. One of such periods is after the recovery of the
2002 market crash, i.e., the dot-com bubble, until the other crash of
2008 (approximately between days 300 and 1300). During such pe-
riod it is interesting to see that the drift trend was always below zero.

In the present work we have shown a methodology to detect con-
cept drift in financial markets. We intend to apply this same method-
ology to intra-day trading as soon as it is possible, thus reinforcing
the need to efficient processing of large volumes of data. The pro-
posed methodology applied over a data stream comprised of care-
fully chosen technical and statistical indicators seems promising in
detecting changes in markets events ahead of time that can reduce
the exposure to risk.

The characterization of the drifts, i.e., trying to understand what is
really changing in the markets through inspection of hidden changes
in the indicators is reserved for future work. Work is under way in
this subject and we are using Self-Organizing Maps [10] to produce
different mappings of the variables for particular segments in time,
namely ones where the market seems to exhibit a stable behavior and
comparing with others where it does not. This segments are obtained
by segmenting time with the concept drift detection. As another im-
mediate future work we will apply this methodology to other indexes
and perform the same study.
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MLP Networks Applied to the Problem of Prediction of 
Runtime of SAP BW Queries  

Tatiana Escovedo1, Tarsila Tavares2, Rubens Melo3, Marley M.B.R. Vellasco4 

 

 
Abstract.1  The SAP BW is a BI tool used daily by about 8000 
employees of a big oil company in Brazil, running monthly about 
150,000 queries to assist in the analysis inherent in their 
professional activities. A query is created to meet a need for 
specific business analysis and its response time is directly affected 
by the use of BW server by other users. The main problem today is 
that there is no way to estimate the execution time in advance, for 
the user to decide the best time to execute the query he needs for 
his work. This article proposes a solution to this problem by 
developing a prediction classification model for the performance of 
BW queries at certain times of the day using Multilayer Perceptron 
(MLP) neural network and the Weka tool [WEKA, 2011]. 

1 INTRODUCTION 

The constant changes in the market have prompted the need for 

more timely and accurate integrated information from different 

departments in order to accelerate the process of decision making 

in the organizations. An analysis of historical integrated data can 

provide indicators of business growth or danger. This fact also 

prompted the emergence of data warehouse technology.  

Data Warehousing is not a product but a strategy that recognizes 

the need to store data in separate information systems and 

consolidate them in order to support various professionals of a 

company in making decisions quickly and effectively. A data 

warehouse is a subject oriented, integrated, time variant and 

nonvolatile collection of data, which aims to support the process of 

decision making [Inmon, 1992]. 

To meet its needs for analytical information, the company uses 

the SAP BW since 2004. Through so-called BW queries, users can 

perform various analysis of business information. Data extracted 

from many sources is integrated and stored in the data warehouse 

implemented with the BW, and then accessed through queries 

which give useful information for the daily work of thousands of 

users. However, a significant problem is that many queries take 

considerable time to perform, because they work with a large 

volume of data and also because they dispute server time with 

other users. Currently, users have no way to estimate the runtime of 
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their query in advance, in order to decide the best schedule for 

execution of the query. This article aims to investigate the 

application of neural networks in the problem of prediction of the 

performance of BW queries along the day. Section 2 presents a 

summary on Neural Networks, the tools Weka and SAP BW. 

Section 3, in turn, explains the problem in study and section 4 

describes the proposed solution. The following section 5, will 

present the results and section 6 will evaluate them, pointing out 

some possible future work. Finally, section 7 concludes this work. 

2 BASIC CONCEPTS 

The purpose of this section is to present briefly the basic concepts 

related to neural networks and the tools Weka and SAP BW used 

in this work. These concepts will provide the theoretical 

background to the issues raised in this study. 

2.1 Neural Networks 

Artificial neural networks are used in the area of intelligent 

systems and computational intelligence [Jang et al, 1997] 

[ZADECH, 1992]. A neural network is a parallel and distributed 

system composed of simple processing units. Its goal is to store 

experimental knowledge and make it available for use. Artificial 

neural networks are similar to the human brain, because knowledge 

is acquired through a learning process and the strength of 

connections between neurons, or synaptic weights are used to store 

the acquired knowledge [Haykin, 1999]. The Multilayer Perceptron 

(MLP) is a type of neural network widely used for its ease of 

implementation and for being considered a universal approximator 

[Hornik et al, 1989]. MLP networks have powerful computing 

power due to the insertion of intermediate layers that enable the 

solution of non-linearly separable problems. Thus, MLP networks 

have at least three layers: the input layer, the intermediate or 

hidden layer and the output layer. A network with one hidden layer 

can implement any continuous function, with two intermediate 

layers, can approximate any mathematical function [CIBENKO, 

1989]. 

2.2 Weka 

Weka [WEKA, 2011] is a free software for data mining. Its 

implemented features and techniques are described in detail in 

[Witten & Frank, 2005], the implementers of the tool. One of the 

uses of the tool is the extraction of classifiers in databases. A 
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classifier (or classification model) is used to identify the class to 

which a specific observation in a database belongs from its 

characteristics (attributes). This tool is used in this work to classify 

BW queries into categories according to the scheduled time of 

execution. 

2.3 SAP BW 

SAP BW is part of the solution of SAP Business Intelligence 

software; whose main purpose is to store in a single location (data 

warehouse) separate from the transactional environment, data from 

different sources, facilitating the provision of analytical 

information for users in an integrated and uniform way. Because it 

is integrated with SAP ERP R/3 it does not need interface files, 

which provides highly reliable transfer and maintenance of the 

quality of the information. The tool encourages the generation of 

queries (queries) by the users, by means of user-friendly tools on 

the web and / or Excel [McDonald et al, 2006]. In this 

environment, information is stored in a structured manner to 

facilitate queries and analysis, thus supporting the decision making 

and management. The BW software is complementary to the R/3. 

While the R/3 is configured to optimally run transactions from day 

to day business (eg buy, sell, manufacturing) BW is optimally 

configured to allow analysis (eg how are my indicators going, how 

good are the sales of a product group to a customer, how is the 

stock of a particular product evolving, etc).  The information can 

be extracted from SAP BW by creating queries using the Query 

Designer tool, which is also part of the suite SAP BW [PALEKAR 

et al, 2010]. This tool has a simple interface and can be easily used 

by the business users to build queries to support their analysis. 

Figure 2.1 shows the construction of a query with the tool query 

designer. 

 

 
 

Figure 2.1. Creating a BW Query 

 

After the creation of the queries either by business users or by 

IT staff of the company they are published and made available to 

the users so that they can extract the necessary data for their 

analyses. The execution of queries can be performed by the 

Business Explorer (BEx), a tool that is also part of the suite SAP 

BW. This tool is integrated with Microsoft Excel, the environment 

in which most business users are already familiar. Alternatively, 

the query may be executed through the web interface. Figure 2.2 

illustrates the execution of a query using the web interface. 

 
 

Figure 2.2. Executing a BW Query 

 

This section presented briefly the basic concepts related to 

neural networks and the tools Weka and SAP BW, which are the 

basics necessary to follow the issues raised in this article. The next 

section presents the real problem addressed in this work. 

3 PROBLEM DESCRITION 

The SAP BW BI tool, as previously mentioned, is part of the day to 

day work of about 8000 users of the company, using queries to 

assist in the analysis inherent in their professional activities. 

Monthly, about 150 thousand executions of more than 8000 

business user queries in the production environment are recorded. 

A query is created to meet a specific need for business analysis, 

and can contain several input filters and several rows and columns 

that can be customized according to user navigation. Thus, some 

queries work with millions of records and take a long time to run. 

Besides relying on adequate filters, the query response time is also 

directly affected by the concurrent use of the BW server by other 

users. Thus, the response time of a single query using the same 

filters can be very different for two runs in different times. 

The main problem today is that there is no way to estimate the 

execution time in advance, so that the user can decide whether or 

not to execute the query in the moment. Without this information, 

many users start a query and when they check that it is taking too 

long, they stop it. However, the query may continue to run on the 

server, overloading the machine unnecessarily. 

If before executing the query the user had its forecast of 

execution time, he could decide whether to run it now or postpone 

it to a time that has faster response avoiding unnecessarily burden 

for the server with an application that will not be completed. 

The execution time of all the queries from BW for each of the 

users is recorded by the BW Statistics BW SAP software another 

tool that is also part of the SAP suite. We intend to use this 

historical basis for predicting the execution time of queries based 

on previous runs. Valuable information is available from the BW 

Statistics, such as the user who executed the query, the total 

execution time, date and time of execution and number of lines 

returned. 

There are two main benefits expected from implementing a 

solution to predict the execution time of queries from BW. First, 

users knowing in advance the predicted performance of a particular 

query may avoid its unproductive execution and the indefinite 

awaiting for the information he or she needs. Second, by possibly 

not executing a query classified as long for the moment, the user 

will relieve the server from an unproductive burden. 
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4 SOLUTION DESCRITPION 

To execute a BW query, the user enters the desired input filters. 

Depending on the existing filters in the query, the same query may 

be specified for different periods of time. For example, for a period 

of one month or one complete year. Therefore, the filters play an 

important role in determining the size of the result set of the query. 

Hence, to minimize the problem of different running times of the 

same query caused by the difference of input filters which may 

imply in different sizes of the result, we have chosen for this work 

only queries that are always executed using the same filter. Thus, 

differences in execution time are caused only by the occupation of 

the server, not by higher or lower amount of records returned by 

the query. Thus, the queries chosen for this study were: 

• Query 1: P_5_CO_P_COOM07M_00014 - Gross 

Administrative Expenditure 

• Query 2: P_5_PS_P_PSCO02M_0029 – CAPEX 

• Query 3: P_5_MM_P_MMPU14M_0002 - Total Purchasing 

The following subsections will detail the process of selecting 

variables, handling of the historical database, setting adequate 

configurations of Weka and execution of simulations. The database 

used was extracted from BW Statistics for the years 2010 and 

2011. 

4.1 Variables choice and the database 

The BW Statistics tool provides valuable information regarding the 

execution of queries. For this study, the information considered 

relevant in the first analysis is illustrated by Figure 4.1. 

 

 
 

Figure 4.1.  Relevant Information of BW Statistics 

 

The column "Query" refers to the technical name of the query. 

As only three types of queries were used in this study, this field has 

been mapped to identifiers 1,2 and 3, representing the query used. 

The column "User" provides information on which user performed 

the query. As we consider that queries are executed the same way, 

regardless of the user, we do not consider this information relevant 

to this study. The information "0TCTUTIME" represents the time 

of execution of the query. This information is mapped into classes 

0-23 representing the hour of the day when the query was 

performed. The column "0CALDAY" represents the date of 

execution of the query. As we consider the day of the week as the 

most relevant information instead of a specific date, this 

information was mapped into categories 0-5, where 0 represents 

Saturday or Sunday and the other values from Monday to Friday. 

Finally, the column information "TIMEALL" represents the query 

execution time in minutes. This information is rounded to integer 

and then mapped into categories 0-4 numerical classification 

representing the query, as follows:  

0: Very fast - up to 2 minutes  

1: Fast - 2 to 5 minutes  

2: Medium - 5 to 10 minutes  

3: Slow - 10 to 20 minutes  

4: Very slow - more than 20 minutes  

In addition to these conversions, the database passed through a 

cleanup that eliminated inconsistent values, eg, negative execution 

time. No incomplete information was found in the database. The 

resulting database, consisting of 10,893 records, was divided into 

training set (2/3 or 7262 records) and test set (1/3 or 3631 records), 

both chosen randomly. Then the training and testing files for Weka 

were created, as detailed in the next subsection. 

4.2 Weka Configurations and Execution of the 
Simulation 

The training and testing files were generated from the database as 

shown in Figure 4.2. We used the Multilayer Perceptron (MLP) 

network topology and the BackPropagation (BP) learning 

algorithm. 

 

 
 

Figure 4.2. Creation of Files for Weka 

 

Various configurations were tried in Weka in order to achieve 

the best classification rate in the samples. Figure 4.3 illustrates a 

neural network generated by Weka. 

We used nine different settings, illustrated by Table 4.1: 

I: Without normalization of the input attributes 

II: With normalization of the input attributes and varying the 

neurons in the hidden layer as follows: 

a) 4 neurons 

b) 5 neurons 

c) 6 neurons 

III: With normalization of the input attributes and varying the 

number of training epochs as follows: 

a) 1 epoch 

b) 100 epochs 

c) 1000 epochs  

IV: With normalization of the input attributes and using a 

validation set. V: With normalization of input attributes and binary 

encoding of input attributes.  

V: With normalization of input attributes and binary encoding 

of input attributes. 
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Figure 4.3. Neural Network generated by WEKA 

 

Table 4.1. Weka Configurations 

 

This section described the proposed solution to the problem of 

predicting the execution time of BW queries. The next section 

presents the results. 

5 RESULTS 

After the execution of nine simulations as detailed in the previous 

section, different results were obtained. Table 5.1 summarizes 

these results obtained in different simulations. The results were 

compared using the following criteria (all in %):  

Correct classification   

Incorrect classification   

Mean absolute error MAE  

Root mean squared error RMSE  

Relative absolute error RAE   

Root relative squared error RRSE 

As we can see in Table 5.1, the configuration that showed the 

best results was the configuration IIIc. This configuration used 

normalization of input attributes, four neurons in the hidden layer 

and 1000 epochs of training. It did not use the validation set and 

nor binary encoding of the input attributes. In contrast, the setting 

that showed the worst results was the setting IIIa. This 

configuration also used normalization of input attributes and four 

neurons in the hidden layer, but used only one training epoch, it 

also did not use neither the validation set and nor the binary 

encoding of the input attributes. 
 

Table 5.1. Summary of Results 

 

There is a strong indication that for this particular problem and 

considering the data used, the number of training epochs was a 

decisive factor in the results, since as we reduce this number 

(settings IIIa and IIIb), the results become far worse. The variation 

in the number of processors in the hidden layer can also have some 

correlation, because when we start to increase this number 

(configurations IIb and IIb), the results begin to deteriorate, 

indicating that four processors in the hidden layer represent a good 

number for this problem.  

The use of a validation set (configuration IV), which is usually a 

good practice, gave much worse results. In contrast, we expected a 

worse outcome when we do not use the normalization of the input 

attributes (configuration I), but the results were very similar (and 

even slightly better) than most of the settings that used the 

normalization. 

6 EVALUATING THE SOLUTION 

After performing the simulations and analysis of the results some 

suggestions of future work as well as some open questions aiming 

at improvements were found. These points are presented below. 

6.1 Treatment of the Database  

Examining the training base, after the simulations, we found that it 

showed some discrepancies that were not previously treated. We 

cite as an example, the number of occurrences of the second query 

(61% of training base), which is much larger than the number of 

occurrences of the query 1 and 3, as illustrated in Figure 6.1.  

 

 
 

Figure 6.1. Distribution of Training Base per Query (1, 2 and 3) 

We also observed by Figure 6.2 a discrepancy in the class of 

runtime: class 0 (very fast) represents 68% of the training base. In 

further work, minimization of such differences should be sought by 

means of homogenization techniques of the database. 

 

 

Figure 6.2. Distribution of Training Base per Class (0 to 4) 
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Another point observed from the analysis of the training base is 

the largest concentration of execution of queries between 11h30 

and 0h (UTC), as illustrated in Figure 6.3. In future work, the use 

of hour intervals instead of the hour variable may possibly give 

more accurate results. 

 

 

Figure 6.3.  Distribution of Training Base per Execution Time (0 to 23) 

6.2 Use of other queries 

The aim of this paper is to investigate the application of neural 

networks in the problem of predicting the response time of BW 
queries. Only three types of queries were used in this study. New 
studies are required to confirm the results obtained, using a wider 

variety of queries. Moreover, as mentioned earlier, the 
parameterization of queries implies in different user input filters 

and, depending on the values used, the same type of query can 
return a very different number of records from one execution to 

another, influencing directly in its running time. Therefore, in 
future, we should not only use a larger number of queries, but also 
study a way to handle the customization of the filter input queries. 

One possible approach is to tackle the filter issue mentioned in 
section 4. The idea is to perform the classification of a query into 

different categories considering also the possibilities of filters and 
record for each execution, which filters were used and what were 
their values. 

6.3 Integration of another system with Weka 

Another interesting future work and extremely useful for the 
company would be the integration of the estimate generated by 

Weka with a system that the user could use to check the predicted 
time of execution of a query "now" versus a future time (eg, within 

15 min, within 1 hour, in 4 hours). Thus, the user could decide the 
best time to execute the query and reduce the occupation of the 
server with unproductive and inconsequent queries. 

6.4 Other methods 

For future research, we intend to evaluate other methods for 
solving the problem of forecasting performance of BW queries, for 

example, fuzzy logic and neuro-fuzzy models. The idea is, after its 

implementation, to compare the results in order to raise issues not 
yet perceived for the problem at hand. 

This section presented some suggestions for future work within 

the same theme explored in this article. The following section 

concludes this paper. 

7 CONCLUSION 

This paper investigated the application of neural networks in the 

problem of prediction of execution time of BW queries in a big 
organization where this represents a huge problem. Section 2 

presented a summary on Neural Networks, the tool Weka and SAP 

BW. Section 3, in turn, detailed the problem in question and 
section 4 describes the proposed solution. Next, Section 5 

presented the results and section 6 evaluated them, pointing out 
some possible future work. 

The classification model utilized in this work was built using 

MLP networks and the BackPropagation algorithm. The setting 

that showed the best results used normalization of input attributes, 

four neurons in the hidden layer and 1000 epochs of training. It 

used neither validation set nor binary encoding of the input 

attributes. This configuration classified correctly 94.3% of the 

samples in the expected classes and proved to be the best 

configuration of this research. 

Finally it must be pointed out that the implementation of such a 

mechanism to predict the execution time of BW queries is 

extremely useful to the company, not only to provide greater 

visibility to the users of the expected time of their queries, but also 

to avoid burdening the server with queries that are interrupted by 

the users because they are taking longer than expected. Thus, we 

intend to deepen this research using the suggestions for future work 

outlined above. 
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Pruning AdaBoost for Continuous Sensors Mining
Applications

M. Rastgoo, G. Lemaitre, X. Rafael Palou, F. Miralles and P. Casale 1

Abstract. In this work, pruning techniques for the AdaBoost clas-
sifier are evaluated specially aimed for a continuous learning frame-
work in sensors mining applications. To assess the methods, three
pruning schemes are evaluated using standard machine-learning
benchmark datasets, simulated drifting datasets and real cases. Early
results obtained show that pruning methodologies approach and
sometimes out-perform the no-pruned version of the classifier, being
at the same time more easily adaptable to the drift in the training dis-
tribution. Future works are planned in order to evaluate the approach
in terms of time efficiency and extension to big-data analysis.

1 Introduction

As the number of sensors deployed every day in the real world in-
creases, the ambition of mining these continuous data-streams be-
comes a crucial part in applications. In the recent years, data mining
techniques started to be very popular in sensors mining tasks spe-
cially when related to learning from data streams [3] [10]. These
techniques, stated upon the machine learning framework, are de-
signed to generate a predictive model from a well sampled training
dataset distribution. The model is further used to classify any future
instance of data without the possibility to be updated if the value dis-
tribution of the data-stream changes. In other words, the paradigm
provided by the typical machine learning setting is not suitable for
continuous mining of data streams [5]. The AdaBoost learning func-
tion [2] allows a suitable framework for mining continuous streams
[8]. Being an incremental ensemble of classifiers, this learning func-
tion is updated to grow its knowledge just adding new classifiers to
the previous models. Nevertheless, when many subsequent batches
of data are provided, Adaboost tends to create large ensembles that
suffer of two main drawbacks: (i) increasing memory needed to store
the decision model and (ii) over-fitting. Pruning techniques can be
suited for reducing the dimension of the ensemble by selecting only
specific models. The first attempt of pruning an AdaBoost classi-
fiers was introduced by Margineantu and Dietterich [6] by mean of
comparing five different methods, namely (i) early stopping, (ii) KL
divergence, (iii) Kappa statistics, (iv) Kappa error convex Hull and
(v) Reduce error with back-fitting. Hernanadez-Lobato et al. [4] used
Genetic Algorithms to prune the AdaBoost ensemble, searching in
the space of all possible subsets of classifiers created by AdaBoost.
Zhang et al. [11] defined pruning as a quadratic integer program-
ming problem with the aim to find a fixed size subset of k classifiers
with minimum misclassification and maximum diversity. Neverthe-
less, those works are no suitable solutions for pruning AdaBoost in a

1 Barcelona Digital Technology Center, Barcelona, Spain, email:
plcasale@bdigital.org

continuous learning framework. In this paper, experiments on prun-
ing methods for continuous data-streams mining are performed. The
AdaBoost algorithm is trained on subsequent batches of incoming
data followed by consecutive pruning steps. The advantage of this
approach is twofold: (i) on the first hand, when new concepts are
learned, pruning allows to maintain the ensemble in order to be the
least memory consuming and (ii) on the other hand, pruning provides
a first attempt to retain only the significant information acquired
from previous knowledge. The reminder of this paper is organized
as follows. In Section 1, the continuous learning framework, the Ad-
aBoost algorithm and the used pruning methods are introduced and
explained in details. In Section 3, validation protocols are described
and, in Section 4, results are presented. Finally, Section 5 discusses
the obtained results and concludes the paper.

Figure 1. Continuous Learning Framework

2 Pruning AdaBoost in Continuous Learning
In a continuous learning framework, as shown in Fig. 1, new knowl-
edge is acquired only when the current model does not fit anymore
the incoming data-stream distribution [9]. This decision is performed
by evaluating the current classifier using the function g as perfor-
mance measure and evaluating the obtained performance e. When
e is not good enough, the current model hi is updated training the
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learning function f with the new incoming data Di+1. Incremen-
tal learning functions should be preferred. In this way, only the new
incoming data will be used for both maintaining the previous knowl-
edge acquired, not having to store historical data. The AdaBoost al-
gorithm represents an incremental learning function able to properly
meet these requirements. Nevertheless the classifiers created by Ad-
aBoost grows linearly as many subsequent learning steps are per-
formed. Here, the pruning function p allows to maintain the model
computationally optimal. Aim of this work is evaluating between dif-
ferent pruning functions p in terms of classifier performance. In the
following subsection, AdaBoost and the pruning methods are pre-
sented and explained in details.

2.1 AdaBoost

AdaBoost, short for Adaptive Boosting, is an ensemble learning al-
gorithm that allows to obtain an high performance classifier by a
linear combination of weak learners. Algorithm 1 shows the pseu-
docode for AdaBoost. The algorithm takes as input a training set
(xi, yi) where xi is a N -dimensional feature vector, and yi are
the class labels. After T rounds of training, T weak classifiers ht

and T weights αt are combined to assemble the final strong clas-
sifier. Higher weights αt are assigned to the best weak classifiers
ht. Instantiations of AdaBoost may differ due to the choice of the

Algorithm 1 AdaBoost Algorithm
Input:

- Training set of N samples (xi, yi), with i = 1 . . . N , xi ∈ RN , yk ∈ Y =
{1,+1} ;
- Weak learning algorithm WeakLearn ;
- Number of learning iteration T ;

Initialize W1(k) = 1/N, k = 1, . . . , N ;

for t = 1, . . . , T do

1. Train WeakLearn using distribution Wt and get weak hypothesis ht ;
2. Compute classification error εt = Prk∼Wt [ht(xk) 6= yk] ;
3. Compute αt = 1

2 ln(
1−εt
εt

) ;
4. Update distribution:

Wt+1(k) =
Wt(k) exp(−αtykht(xk))

Zt
;

where Zt is a normalization factor chosen so that Wt+1 will be a proper
distribution function.

end for

Output:
H(x) = sign(

∑T
t=1 αtht(x)) ;

weak learning algorithm, defined as a learner performing slightly bet-
ter than random guessing (> 50% right-classification). A variety of
weak learners e.g., neural networks or decision trees can be used.
Decision stumps are the most common weak classifiers used in Ad-
aBoost. Decision stumps are one-level decision trees equivalent to a
threshold that best splits the data. Each stump learner is character-
ized by three parameters: (i) the nth dimension of the features set
where the classifier is applied, (ii) the decision level, i.e., the thresh-
old splitting the data in the nth given dimension and (iii) the decision
sign (−1 or +1) determining the inequality direction for the thresh-
olding. For a given batch of data with a set of features of size n, at
each iteration of AdaBoost the decision stump that minimizes the er-
ror εt in an nth dimension of the training distribution is selected. The
information provided by the final set of decision stumps selected by
AdaBoost can be used for mining which are the significant features
of the data-stream and, more important, which is the best split in the
data.

2.2 Pruning methods
Three different pruning methods have been used and compared,
namely (i) Reduce Error, (ii) Learner Weights Analysis and (iii)
Pareto Analysis. The Reduced Error algorithm was used first in [6].
Being the original implementation not suitable from a continuous
learning framework, an improved version is proposed in this work
in order to speed-up the process. Pruning has also been performed
using Learner Weights and Pareto Analysis methodologies, both of
them able to provide a set of most discriminative learners from the
whole ensemble. From the far of our knowledge, no previous appli-
cation of those methodologies has been done in the tasks of pruning
an AdaBoost ensemble.

2.2.1 Reduce Error (RE)

In this algorithm, the first step is performed in order to initialize the
pruning distribution Wt and to select the weak classifier ht from the
ensembleH which minimizes the classification error εt onWt distri-
bution. This classifier is added to the pruned ensembleP , a weightαt

is assigned to it andWt+1 distribution is also updated as in AdaBoost
routine. Then, iteratively, each remaining classifier ht is individually
added to the ensemble P and the classification error εt of this new
ensemble is evaluated on the pruning set using Wt+1 distribution.
In order to select the best classifier, the classifier ht combined with
P minimizing the classification error εt is definitely added to P , a
weight αt is assigned to it and Wt+2 distribution is also updated as
in AdaBoost routine. The routine stops when the number of classi-
fiers in the sub-ensemble P reaches a ppre-specified size. The two
main changes with respect the original RE algorithm are the follow-
ing. In the original version, a final back-fitting approach is performed
only after the selection of each weak classifier while in our approach
selection is done at each step. In addition, each weak classifier is
added to the pruned ensemble P only after being re-weighted. This
procedure ensures better classification results than the original RE
formulation.

2.2.2 Learner Weights Analysis (WA)

From the distributions of the weights αt in the ensemble, weak learn-
ers were selected based on the following assumptions: (i) weak learn-
ers with higher ensemble weight αt are the best weak learners of the
ensemble and (ii) an ensemble is better when more diversified the
classifiers forming it are. The technique works as follow. AdaBoost
is applied on the batch of data to obtain an ensemble of T classifiers.
Then, a matrix M is built, by grouping the ensemble weights αt of
each decision stump classifier using their dimension parameter. M
is of size n × D where n is the number of element for each of the
D dimensions. In order to select the best classifiers, M is first sorted
formerly by row and subsequently by column, always in a descen-
dant order. M is transformed into a vector V by concatenating all its
columns. Finally t classifiers corresponding to the t first weights of
V , with t << T , are selected. The value of t determines the pruning
percentage.

2.2.3 Pareto Analysis (PA)

PA is based on the assumption that few key actions will produce sig-
nificant overall effects. Applied to ensemble learning, this technique
implies that only few key weak classifiers will have an high impact
on the overall performance of the ensemble. PA proposed a statistical
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point of view in order to select these key classifiers. This technique is
used to estimate effectiveness of each feature dimension, and accord-
ingly selects the classifiers from feature dimensions with high im-
pact. The effectiveness could be adjusted using a threshold. First, the
features are grouped based on the total number of ensemble weight
which are considers as outliers in each dimension. The outliers could
be found with reference to first and third quartile (Q1, Q3), and inter
quartile range (IQR). Values above Q3 + 1.5 × (IQR) are con-
sidered as outliers in each case. The frequency distribution of these
outliers is sorted in descendant order and the cumulative distribution
is computed. Then, the features dimensions are selected based on a
threshold level corresponding to the number of classifiers to keep. All
dimensions with lower cumulative percentage than the threshold (i.e.
desired percentage of maximum cumulative value) are taken into ac-
count. From the selected feature dimensions, the maximum weights
are used to highlight the learners. The technique can be perceived as
a principle dimension selection, where the dimensions considered as
more important are selected.

3 Validation Protocol
Three typologies of experiments have been performed in order to
validate the effectiveness of the pruning methods on both static and
drifting distributions. A cross-validation approach has been used for
validating the methods. At each step of the cross-validation procees,
the dataset has been randomly divided into three sub-sets, training
(50%), pruning (40%) and testing(10%) sets. In the following sec-
tions the validation protocols adopted for each topology of experi-
ment are described. Under the model described in Fig. 1, a proper
threshold Th has been chosen in order to train the model always on
the new incoming data.

3.1 UCI Datasets Repository
Five datasets from the UCI repository [1] have been used for eval-
uating the effectiveness of the pruning methods. In this validation
step, the KL divergence method as originally proposed in [6], has
been added in order to have a baseline comparison. The datasets con-
sidered are Australian, Breast, Diabetes, Heart and Pima. The mean
number of instances in the datasets is around 700, except Heart hav-
ing 270 instance. The aim of the experiment is to analyse the re-
sults by pruning at 90% an initial ensemble. The average error rate
for each technique was computed using a modified version of ten
fold cross-validation able to consider the pruning sets into the eval-
uation process, with the percentage previously outlined. AdaBoost
algorithm was used to create an ensemble of hundred weak classi-
fiers. Then, each pruning method was performed in order to create a
pruned sub-ensemble containing only ten classifiers.

3.2 Simulated Drifting Datasets
The second set of experiments has been focused on testing the prun-
ing methods in a continuous learning framework. These have been
performed using three sets of simulated data-streams that include
drifting. The datasets are generated using the software provided
by [7]. Figure 2 shows the three different settings for each experi-
ment. Four linear drifts have been considered for the first dataset and
three circular drifts have been created for the remaining two datasets.
The ensemble was incrementally grown using all the drifted distribu-
tions. The experiments performed using the simulated datasets are
described in the following.

(a) Linear Drift (b) Circular Drift (c) Circular Narrow
Drift

Figure 2. Artificial data with drifts

Exp. 1: In the first experiment, it is assumed that data distribution
is subject to the change due to different drifts and the ensemble
is incrementally grown over the drifted batches of incoming data
with the main aim to classify the current batch of information.
After the training, the pruning and the testing are applied on a
different samplings of the same drifted batch. The experiment is
repeated five times following a 5-fold cross-validation paradigm.
Exp. 2: The aim of the second experiment is to evaluate the poten-
tial of pruning in classifying both previous and current informa-
tion. With the training kept as in the previous experiment, at each
step i the ensemble is pruned and tested on pruning and testing
sets of the joint distribution C0 ∪ . . . ∪ Ci. The experiment has
been performed on five different runs, following a 5-fold cross-
validation paradigm.

3.3 Real World Datasets

Three real-world datasets have been used in order to evaluate the pro-
posed methodology on a real world scenario. The datasets considered
are described in the following.

• The Sensor Stream(SS) dataset [12] contains sensors information
(temperature, humidity, light and sensor voltage) collected from
fifty-four sensors deployed at Intel Berkeley Research Lab. The
whole stream contains consecutive information over two months
(2 219 803 instances). The experiment aims to infer the illumi-
nance state based on the measurements provided by each sensor.
Illuminance higher than 200 lux are considered as class 1 oth-
erwise considered as class −1. Every fifteen days, a new batch
of data is collected which leads to three drifts considering the
changes in the lab environment due to weather, humidity and
office work. The experiment was performed using 4-fold cross-
validation paradigm.

• Power Supply(PS) [12] is the second dataset used. The dataset
contains hourly power supply consumptions of the Italian electric-
ity company. The stream contains three year power supply records
from 1995 to 1998 (29 928 instances). The experiment aims to
predict the day state morning (1) - night (−1)) based on the raw
consumption value. The drifting in this stream is mainly derived
by some features such as the season, weather, hours of a day and
the day of the week. The data were split in three batches represent-
ing one drift for each year. The experiment was performed using
3-fold cross-validation paradigm.

• Elec 2(E2) is the third dataset used. This dataset containing 27 549
instances is composed of seven drifts, each representing a week
day. The drifts are due to changes of power consumptions over
the weekdays. The experiment was performed using 7-fold cross-
validation paradigm.
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(a) Results obtained on Linear Drift in Exp.1 (b) Results obtained on Circular Drift in Exp.1 (c) Results obtained on Circular Narrow Drift in Exp.1

Figure 3. Results obtained on simulated drifting datasets for Exp.1

As in the Exp. 2 on simulated data, AdaBoost is trained for each drift
on the training set of current data. The pruning function is applied on
a pruning set which contains samples of previous and new batches of
data.

Figure 4. Performance of pruning methods on UCI datasets with %90
pruning

Figure 5. Performance of pruning methods on real world datasets

4 Experimental Results
In this section, results obtained on the experiments described in the
previous section are reported. Misclassification error has been cho-
sen as performance measure. In particular, the pruning methods has
been evaluated using the relative error (εrel) with respect to the error
provided by the no-pruned version of AdaBoost, computed as shown

in Eq. 1. Hence, methods with negative relative errors are performing
better than the reference model.

εrel = −1 · εno pruned − εpruned

εno pruned
(1)

4.1 UCI Datasets Repository
In Fig. 4 the results obtained on the five UCI datasets are reported.
RE is the method performing better than the others, being better than
the reference in Aus, Dia and Hea datasets, and slightly worst than
the reference in Pim. Similar behavior is obtained by WA. Pruning
performs always bad on Bre, where the best result is provided by PA.

4.2 Simulated Drifting Datasets
Results obtained on simulated drifting datasets with Exp. 1 are re-
ported in Fig. 3. RE is the best pruning method for linear and circular
drifting datasets, as previous experiments suggest. In both linear and
circular drifting, WA performs better than PA. Non of the pruning
methods work better than the no-pruned version for high percentage
of pruning. Nevertheless, WA works slightly better than no-pruned
Adaboost when the percentage of pruning is almost 50%. As it may
be expected, the performance of the pruned ensemble generally get
worse as the percentage of pruning increases. Nevertheless, RE is
able to maintain its performance constant over the pruning percent-
age in the circular dataset and almost constant in the narrow pruning
dataset. For Exp. 2, results obtained on simulated drifting datasets
are reported in Fig. 6. In this setting, all the pruned ensemble behave
better than their correspondent no-pruned classifiers. As all previous
experiment suggest, RE is the best method, followed by WA. Also
in this case, although the performance of the methods decreases as
the percentage of pruning increases, RE remains almost constant re-
gardless of the percentage. It should be also noted that the AdaBoost
performance in this experiment is rather bad, reaching a global er-
ror up to 40%. The pruning methods improve this performance until
reaching an error of 25%.

4.3 Real World Datasets
Results obtained on the real world dataset are shown in Fig. 5. Re-
sults obtained with the PS datasets are shown in Fig. 7. RE con-
firms to be the best pruning method, followed by WA. For SS and
E2 datasets, WA and PA provide the same performance. It should be
noted that RE performs better than the no-pruned version for all the
experiments.
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(a) Results obtained on Linear Drift in Exp.2 (b) Results obtained on Circular Drift in Exp.2 (c) Results obtained on Circular Narrow Drift in Exp.2

Figure 6. Results obtained on simulated drifting datasets for Exp. 2

Figure 7. Performance of pruning methods on the PS dataset

5 Discussions and Conclusions

In this work, experiments have been carried out in order to evaluate
the potential of different pruning methods and their performance in
the framework of continuous learning. The Reduced Error method
is the most consistent method followed by Learner Weight Analysis.
The use of Pareto Analysis does not seem to be justified during the
experiment. Nevertheless, one of the important characteristic of this
method consists in the capability of defining automatically the num-
ber of classifiers of the pruned ensemble. PA may be automatized
by thresholding the performance. Early results show that this auto-
matic version performs better than the original method in most of the
cases. Experiments on simulated datasets in case of Exp 1 show that
pruning methods are more efficient over wider drifted distribution
rather than narrow drifted distribution. Due to the nature of the nar-
row circular dataset, drift stages have more common area and since in
this experiment, current stage has more effect for pruning, compare
to previous stage, the pruning performances are slightly lower. At the
same time,Exp 2 show that pruning methods perform better than the
original classifier when the whole drifting distribution is presented.
Based on Fig. 6, pruning ensemble through the incremental learning,
definitely improves the final results. Finally, results obtained by ex-
periments on real datasets prove that pruning through the continuous
learning process provides very close or better results than AdaBoost.
As future works, an evaluation of the method efficiency in terms of
computational complexity will be considered since this parameter
has a great importance in a continuous learning framework. For this
main motivation, the reduced error method had been modified in our

research in order to be conceptually capable to run following time
efficiency guidelines and methods based on genetic algorithm and
semi-definite programming have been not used for comparison. Fi-
nally, a study on the extension of the proposed methods towards a
big-data approach is planned to be done. This research shows that
pruning by selecting the weak classifiers from different pools of sub-
sampled data may improve the final ensemble in terms of accuracy,
diversity and adaptation ability to drift. The employed procedures
in this work can be easily adapted for large datasets and continuous
learning environment with the high quantity of incoming data.
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Finding the best ranking model for spatial objects  
Hadi Fanaee Tork1 

 
Abstract.1 Top-k spatial preference queries has a wide range of 
applications in service recommendation and decision support 
systems. In this work we first introduce three state of the art 
algorithms and apply them on a real data set which includes 
geographic coordinates and quality data of over 355 hotels, 276 
point of interests and 563 restaurants in Lisbon, Portugal extracted 
from well-known TripAdvisor2. This is the first time that 
mentioned algorithms are evaluated on a real data set. We also use 
some optimization tasks for the estimation of algorithms 
parameters. Finally we rank the hotels using the best obtained 
ranking model. Result reveals that influence score with a particular 
radius is able to rank spatial objects very near to the real rankings.  

1 INTRODUCTION 
There exists an wide range of location-based applications that rely 
on spatial preference queries. For instance, the tourist species a 
spatial constraint (for instance the range around a hotel) to retrieve 
the facilities around the hotel. Then, if the eligible facilities are 
rated, the result of the query might be the top-k hotels which have 
the best ranked facilities [3]. Top-k spatial preference query 
answers such kind of questions. It returns a ranked set of the k best 
data objects based on the non-spatial score (quality) of feature 
objects and spatial score (distance) in its spatial neighborhood 
[1,2]. Several approaches have been proposed for ranking spatial 
data objects based on defining the score of a spatial data object p 
based on the scores of feature objects that have p as their nearest 
neighbor. In the rest of the paper we first introduce a general 
framework of three algorithms entitled Range Score, Nearest 
neighbor (NN) and Influence Score. Then in section 3 we present 
the data set used in the paper. In the section 4 we explain our 
performed experiments. Later in section 5 we express the results. in 
section 6 we show how we rank hotels of Lisbon based on the best 
ranking model obtained and finally in section 7 we discuss the 
results and bring the conclusion of the paper. 

2 TOP-K SPATIAL FRAMEWORK 
A Spatial preference query, ranks the spatial objects based on 
quality of its neighbor facilities. For instance a tourist might 
retrieve a sorted list of hotels based on the facilities around that 
(e.g. restaurant, hospital , market, etc.). Assume that p is our point 
of interest (e.g. a hotel) and we have m type of facilities(e.g. 
restaurant means m=1 and park means m=2). Then assume that 

n
mf  is n-th facility from type m (e.g. Restaurant A). First we 

retrieve a list of candidates for P according to Table 1. Table 1 
shows how one of the methods choose the primary candidates. 

                                                                 
1 LIAAD-INESC Porto, University of Porto , hadi.fanaee@fe.up.pt 
2 http://www.tripadvisor.com 

Table 1 Candidate Selection Criteria 

Method  
Nearest Neighbor )),(min( n

mfpd  
Range Score Rfpd n

m <),(  
Influence Score All 

 
As we can see, Nearest Neighbor, from each type m retrieves n-th 
element of that ( n

mf  ) which has the minimum distance with p. 
Range score retrieves a list of items which have at least distance(d) 
of pre-defined R with P. Influence score retrieves all the items for 
further computation. Afterwards, We define Score of point P 
according to the following  equation: 

}{
1

m
Ci

m
m
Cip wAggS α×=∑     (1) 

Where, Agg denotes the aggregation function which can be 
maximum or sum. w is equal to the weight or quality of item(e.g. 
hotel with 5 star can have weight of 5 and hotel with one star can 
have weight of 1) and i is an index of retrieved candidates. α is 
influence function which is equal to 1 for Nearest Neighbor and 
Range score and is equal to the equation 2 for Influence score. 

 
( )

R
fpd i

m,

2
−

=α     (2) 

Where d denotes the distance between point P and facility i of 
category m. and R is a pre-defined radius.  

 
Then the result of Top-K spatial preference query is a sorted list 

of Sp for all point of interests (P). 

3 DATA SET 
Data set is extracted from a well-known online tourism information 
source TripAdvisor which is the most biggest and richest source for 
travelers around the world to find the relevant information and 
other user feedbacks about hotels, restaurants and point of interests. 
One of interesting service of TripAdvisor is providing a raking of 
all tourism locations. The ranking criteria are not visible to the 
users but in general is a combination of on users opinions and 
ratings and other sources. Nowadays many users around the world 
choose their destination, hotels and places to visit based on this 
ranking.  
 
We extracted all hotels and all near restaurants and point of 
interests(POI) corresponding to city of Lisbon, Portugal. All GPS 
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coordinates and quality factors were extracted from the Raw 
crawled HTML pages 

 
We then transferred extracted records to the MySQL databases for 
further process. Finally we had three tables hotels, restaurants and 
attractions with 355, 563 and 276 records respectively. 
 
Since for some locations , the GPS coordinates were not available, 
we employed Google Map API[5] and Yahoo Map API[6] 
Geocoding service to fetch GPS coordinates. Then we removed the 
places which their coordinate was not available after the 
Geocoding step. We also removed those hotels which for them 
ranking was not available in TripAdvisor. 

Figure 1. Experiment overview 

4 EXPERIMENTS 
Two significant problems regarding the Top-k spatial preference 
query is that first no evaluation on the ranking results is presented 
yet and second there is not any solution for estimating the radius 
value in two of algorithms range score and influence score. In other 
words, when a ranking is made how we can make sure about the 
correctness of that, or better say how the ranking model correctly 
assign the spatial objects to the true ranks. 

 
Solving this problem is impossible unless we could compare 

two generated and real ranking sets together. TripAdvisor real 
ranking set enable us to perform such comparison and 
measurement.  Our performed experiments are illustrated  in  figure 
1. we first apply Top-K spatial preference query algorithms on the 
data set and generate three ranking set namely NN, RNG and INF 
which stands for Nearest Neighbor , Range Score and Influence 
score respectively. Then in order to evaluate the ranking model we 
benefit from Spearman's rank correlation coefficient[7]. After this 
step we find out that which model with which parameters is the 
best model for predicting the ranking of a hotel. Thus in the next 
step we employ our best model to rank all the hotels in Lisbon. 

 
As mentioned in the section 2, Nearest neighbor is not dependant 
on radius R, so this algorithm doesn’t have any input parameters, 
instead, two other algorithms Range score and Influence score has 
radius R as their input.  In order to study the impact of quality 
weight on Influence Score method, we defined two kind of 
Influence score, INFMAX0 and INFMAX1 so that in the latter one, 
w is considered to be equal to 1. it means INFMAX1 just consider 
the spatial property of place and ignores the weight(w). 
 

 
 

Figure 2. Spearman's rank correlation for different R from 100m to 
20000m for 4 rankers NN (nearest neighbor), range score(RNG), influence 
score with sum module(INFSUM), influence score with max module with 
considering the rating of attrac-tions(INFMAX0), influence score with max 
module and not considering the rating of attractions(INFMAX1) 

 
On of the important problem regarding the Influence Score 
approach is determination of R. In order to estimate the best R we 
generated 5 ranking set for R from 100 to 19900 meter by 
granularity of 100 meter. For both RNG and NN we used 
maximum aggregation while for INF we tested both 
maximum(INFMAX0 and INFMAX1) and sum function (INFSUM).  
Then we compute spearman rank correlation coefficient for each 5 
generated rankings sets to the TripAdvisor Real ranking set. 
 
Results are shown in figure 2. The vertical axis represents the 
spearman rank correlation coefficient and the horizontal axis shows 
the R value. The best rankers are those that have the biggest area 
under their curve. Therefore green curve which is related to the 
INFMAX0 would be identified as the best model. INFMAX1 which 
do not consider the facilities quality is also placed at the second 
place. The maximum correlation (73.4%) is obtained at R=700m 
for INFMAX0 ranker and for INFMAX1 77% correlation is 
obtained at R=7500m. In terms of RNG have a constant behavior 
between 0.522 and 0.526 very near to NN which is always equal to 
0.519 and doesn’t change by the increasing of R. 

  
Figure 3. Spearman's rank correlation for R=7500m and Influence 
Score with Max module and considering the attractions rating 

5 Ranking of Lisbon Hotels  
We used our best ranking model (INFMAX0 with R=7500m) to 
rank all hotels in Lisbon. Figure 6 shows  Spearman's rank 
correlation computed between all generated rankings sets. P and R 
at the end of titles stands for attractions and restaurants 
respectively. For instance InfMaxR means that the corresponding 
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generated ranking set is obtained by just taking into account the 
restaurants and by using Influence score method. Best column 
represents our best ranking model. The columns that doesn’t have 
any R or P at the end of their title are those which both restaurants 
and attractions are considered in the ranking generation. Also 
another two columns review and TPrank denote the number of 
reviews done for that item in TripAdvisor and the corresponding 
rank in TripAdvisor respectively.  
 

Some interesting facts can be extracted from this table. For 
instance intersection of InfMax and TPrank shows that generated 
ranking set by InfMax has +0.77 correlation to the real ranking 
provided by TripAdvisor. Also some other interesting results can 
be obtained from this table. For example we can realize that 
Influence score with max aggregation if applied on just restaurant 
data set has +0.94 correlation with ranking set generated with 
Nearest Neighbor. We also understand that influence score with 
sum aggregation never performs good and always show a negative 
correlation to TPrank. If we look the correlation between NN and 
RNG we discover an interesting fact. It reveals that by using 
R=7500m ranking set get highly correlated to nearest neighbor 
ranker with 99.9% confidence. 

6 DISCUSSIONS & CONCLUSION 
In this paper we presented a new method for evaluation of Top-k 
spatial preference query. One of the direct result we obtained was 
the high performance of original influence score ranker with max 
aggregation function that shows 77% correlation to  real ranking of 
TripAdvisor. It means that when there is no ranking set available, 
this method can be a good alternative since it generates close 
ranking set. Second we proved that despite by a first glance, 
influence score with sum aggregation could have a wide cover on 
all attractions and thus could have a better ranking result, the 
opposite happened and it generally didn’t provide a good result.  
 
When we are dealing with very large data set, the computation cost 
will be the most important factor to choose a solution. Nearest 
neighbor and Range score can be a good choice since provide 
constant correlation of approximately 50%. 
 
As we also observed there is not considerable difference between 
INFMAX0 and INFMAX1 them. Even in R<700m not considering 
INFMAX1 that doesn’t consider the quality of facilities performs 
better. It reveal an important fact. Tourist usually use to visits close 
attractions to their hotel without considering the quality of them. 
However when distance goes upper than 700m the quality of that 
attraction gets important and they pay attention to the rating of that 
place with the goal of not wasting their time and money in transfer. 
In other words, tolerance threshold of travelers is the intersection 
of two curves InfMax0 and InfMax1 which is 2700m. It means that 
by increasing the distance from 700m to 2700m from the hotel, the 
motivation of travelers to look for rating of the attractions is 
increased.  
 
The reason why RNG and NN show a constant value is this fact that 
most hotel owners establish their hotel in a place that is close to at 
least some attractions. Except some minor cases, no hotel company 
invests on a place that is very far from all attractions. So when 
there is for example 4-5 attractions near to the hotels, their NN and 

RNG is affected by the rating of them and thus doesn’t change a 
lot. Because always it is possible to find one high quality attraction 
near to the hotel. 
 
The reason why influence score with sum aggregation gets 
negative correlation is this fact that it counts all attractions and thus 
consider very far attractions and thus distance in equation 2 goes 
upper and deduct the overall score.  
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Identification of Opinions in Arabic Texts using Ontologies 

Farek Lazhar and Tlili-Guiassa Yamina

Abstract. A powerful tool to track opinions in forums, blogs, e-
business sites, etc., has become essential for companies, 
politicians as well as for customers, and that because of the huge 
amount of texts available which make the manual exploration 
more and more difficult and useless. In this paper, we present 
our approach of identification of opinions based on an 
ontological exploration of texts. This approach aims to study the 
role of domain ontologies and their contributions in the 
identification phase. In our approach, domain ontology and 
sentiments lexicon are needed as pre-requirements. 

1 INTRODUCTION 

The views available on the Internet have a significant impact on 

users, for example, if users have already researched opinions on 

a product, they are willing to pay more for a product whose 

opinion is more favorable than another, and the product will be 

more marketed than another whose opinion is less favorable 

[14]. 

Companies, politicians, and customers need a powerful tool to 

track opinions, sentiments, judgments, and beliefs that people 

can express in blogs, comments, or in the form of texts, toward a 

product, a service, a person or an organization, etc. [13]. 

In opinion mining area, the use of expressions as a “bag of 

sentiment words” to detect the semantic orientation of the 

overall content of a text needs to give values to those 

expressions  as positive, negative or neutral towards a given 

topic [10]. 

Generally, research works in this area can be grouped into three  

main categories: 

 

 Development of linguistic and cognitive models for 

opinion mining where all approaches based on 

dictionary or corpus are used automatically or semi-

automatically to extract opinions based on the semantic 

orientations of words and phrases [2]; 

 

 Opinions extraction from texts, where all the local 

opinions are aggregated to determine the overall 

orientation of a text [1],[2],[6]; 

 

 Features based opinion mining, where all the opinions 

expressed towards the characteristics of a product or an 

object are extracted and summarized [5], [8], [9]. 

 

This article focuses on identification and classification of 

opinions in Arabic texts, which aims to calculate the semantic  

orientation of the entire content of a text as positive or negative 

toward a subject or an object from the subjective expressions 

carrying the semantic orientations of the different features, but 

the key questions that we should ask are: 

 How to get this set of features? 

 

 What features are related to each other? 

 

 What model of knowledge representation to be used to 

produce an understandable summary for the studied 

domain? 

 

To answer these questions, we propose in this paper to 

study the role of ontologies used in opinion mining, and 

more specifically, our goal is to study how domain 

ontology can be used to: 
 

 Structure the features; 

 

 Extract explicit and implicit features from the texts; 

 

 Produce summaries based on reviews and user 

comments. 

 

The paper is organized as follows: We present in Section 2, state 

of the art of the main approaches used in the field and the 

motivations of our work. We present in the next section, our 

approach and the general architecture of opinions identification 

process. 

2 STATE OF THE ART 

1.1 Related Work 

Overall, two main types of work are distinguished, those that are 

based on simple features extraction from the texts, and those 

who organize features into a hierarchy using taxonomies or 

ontologies. The extraction process mainly concerns explicit 

features. We can distinguish two main families: 

 Opinion Mining without Knowledge 

Representation Models 
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All approaches that do not use knowledge representation 

models are based on the use of algorithms to discover the 

different characteristics of a product or an object. Only the 

expressions of opinions (adjectival and adverbial) are 

extracted, then a summary is produced to show for each 

characteristic, the positive and the negative opinions and the 

total number of these categories [2], [8].  

The main limitation of these approaches is that there is a large 

number of extracted features and a lack of organization. In 

addition, similar concepts are not grouped (for example, in 

some domains, the words “موعد” and “لقاء” witch have the 

same meaning “appointment”), and possible relationships 

between the features of an object are not recognized 

(example: “قهوج” “coffee” is a specific term of “شسب” 

“drink”). Thus, analysis of polarity (positive, negative or 

neutral) of the text is done by assigning the dominant polarity 

of opinion words, regardless of the polarities associated with 

each feature individually [10].  

 Opinion Mining with Knowledge 

Representation Models 

The family itself can be divided into two subfamilies: 

 

(a) Use of Taxonomies 

This kind of approaches does not seek a list of features, but 

rather a hierarchical organized list by the use of taxonomies. 

We recall that a taxonomy is a list of terms organized 

hierarchically through a sort of “is a kind of”. In [5] the 

author use predefined taxonomies and semantic similarity 

measures to automatically extract the features and calculate 

the distances between concepts.  

Generally, the use of taxonomies is coupled with a 

classification technique; the sentences corresponding to the 

leaves of the taxonomy are extracted. At the end of the 

process, a summary that can be more or less detailed is 

produced. 

(b)  Use of Ontologies 

 

These approaches aim to organize the features using 

elaborated representation models. Unlike taxonomies, 

ontology is not restricted to a hierarchical relationship 

between concepts, but can describe other types of 

paradigmatic relations such as synonymy, or more complex 

relationships such as relations of composition or spatial 

relationships. 

Generally, the extracted features correspond exclusively to 

terms contained in the ontology. The feature extraction phase 

is guided by a domain ontology, built manually [11], or semi-

automatically [7], [9], which is then enriched by a process of 

automatic extraction of terms, corresponding to new features 

identification. 

Similar features are grouped together using semantic 

similarity measures.  

 Ontologies have also been used to support polarity mining. 

For example, in [4], the authors manually built an ontology 

for movie reviews and incorporated it in the polarity 

classification task which substantially improved the 

performance of their approach. 

1.2 Ontology Based Opinion Mining 

In [13], the use of a hierarchy of features improves the 

performance of features based identification systems. 

However, works using domain ontologies exploit the ontology 

as a taxonomy using only “is a” relations between concepts. 

They do not really use all data stored in an ontology, such as 

the lexical components and other types of relationships. We 

believe that we can get several advantages in the domain of 

opinion mining by the full use of domain ontology 

capabilities: 

 

 Structuring of features: Ontologies are tools that 

provide a lot of semantic information. They help to 

define concepts, relationships, and entities that 

describe a domain with an unlimited number of terms; 

 

 Extraction of features:  Relationship between concepts 

and lexical information can be used to extract explicit 

and implicit features.  

3 OUR APPROACH 

1.3 Description 

For each studied domain, our approach requires three basic 

elements: 

 A domain ontology O, where each concept and each 

property is associated to a set of labels that correspond 

to their semantics; 

 

 A lexical resource L of opinion expressions; 

 

 A set of texts T as comments and views. 

 

Based on the conceptual model described in [10], and on the 

definition described in[3] witch define an elementary discourse 

unit (EDU) as a clause containing at least an elementary opinion 

unit (EOU) or a sequence of clauses that address a rhetorical 

relation to a segment expressing an opinion. Note that an EOU is 

an explicit opinion expression composed of an explicit noun, an 

adjective or a verb with its possible modifiers (negation and 

adverbs). 

In a review, the opinion holder comments a set of features of an 

object or a product using opinion expressions. Each feature 

corresponds to a concept or a property in the ontology O.  

62



For each extracted EDU, the system: 

 Extracts EOUs using an approach based on rules; 

 

 Extracts features that correspond to the process of  

terms extraction using the domain ontology; 

 

 Associates, for each feature within the EDU,  the set of 

opinion expressions; 

 

We detail below, these steps: 

(a) Extraction of Elementary Opinion Units: Nouns, 

adjectives or verbs may be associated with certain 

modifiers such as words of negation and adverbs. For 

example, “ممتاش”, “excellent”, “ليس جيدا”, “not good” are 

EOUs.  

For example in the following comment, the EDUs are between 

square brackets, the EOUs are underlined, and the characteristics 

of the object are in bold. There is an inverse relationship 

between the EDUa and the EDUb, representing the review 

expressed in the EDUd. 

 

 

 

 

 

 

 

 
 

Figure 1. Example showing EOUs Extraction 

(b) Features Extraction 

This step aims to extract for the comment all the labels of the 

ontology. As each concept is an explicit feature, we simply 

project the lexical components of the ontology on the text to 

obtain, for each EDU, all the features. To extract the implicit 

features, ontology properties are used. We recall that these 

properties are to define the relationships between concepts of the 

ontology. For example, the property “يسوق”,“drive” links the 

concepts “سائق”,“conductor” and “سيازج”,“car”. 

(c) Linking Opinions Expressions with Extracted 

Features 

In this step, extracted opinions expressions in step (a) have to be 

linked to the features extracted in step (b), i.e. we should 

associate with each EDUi the set of pairs (fi, OEi). During this 

step, we distinguish the following cases: 

 Known Opinionated Features and Known Opinions 

Expressions: In this case, opinionated features match to 

the used opinions expressions. For example, if our 

lexicon contains the concept “طثيعح”, “nature”, and 

sentiments lexicon contains the word “خلاب”, 

“amazing”, from the EDU “طثيعح خلاتح”, “amazing 

nature”,  it is easy to extract the couple (خلاتح ,طثيعح), 

(nature, amazing) from the text. 

 

 Known Opinionated Features and Unknown Opinion 

Expressions: Expressions, as in the EDU “وتائج مقثولح”, 

“acceptable results”, where the opinion word “مقثول”, 

“acceptable” was not extracted in step (a) (see section 

3.1). In this case, the lexicon of opinions can be 

automatically updated with the recovered opinion word. 

 

 Unknown Opinionated Features and Unknown 

Opinion Expressions: As in the EDU “ زائعح مطسيح غاتح ”, 

“wonderful rainforest” where the feature 

 rainforest” has not been extracted in step (b)“,”مطسيح“

(see section 3.1), in this case, the domain ontology can 

be updated by adding a new concept or a new property 

in the right place. 

 

 Opinion Expressions Only: As in the EDU “تطيء”, 

“It‟s slow”. This kind of EDU expresses an implicit 

feature. In this case, we use the ontology properties to 

retrieve the associated concept in the ontology. 

 

 Features Only: An EDU with features alone can also be 

an indicator of the presence of an implicit opinion 

expression towards the feature as in “ الحديقح أصثحت ملجأ

 the park became a haven for perverts”, witch“ ,”للمىحسفيه

express a negative opinion towards “الحديقح”, “the park”. 

1.4 Architecture of our Approach 

In this section, we present the general architecture of our 

approach and the different modules constituting our system: 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. General architecture of our approach 

a[ جهاز هاتفيوم أمس ، اشتسيت  ] 

b[حتى إذا كان الهاتف ممتاشا] 

c[فان التصميم تسيط جدا ] 

d[الشيء المخية للآمال في هري العلامة] 

[Yesterday, I purchased a phone] a. [Even if the phone is 

excellent]b, [the design is very basic]c, [which is disappointing 

in this mark]d. 

 

Texts 
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EOUs 

Features Extracting 
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Ontology 

Sentiments 

Lexicon 

Features and EOUs 

 Associating 
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As indicated in the last figure, our system contains the 

following modules:  

1. Texts EDUs Segmentation: Generally, extraction of 

elementary discourse units (EDUs), depends on the 

use of delimiters such as “.” , “,”, “?” “!”; 

2. EOUs Extracting: Elementary opinions units EOUs 

and semantic orientations are usually extracted using a 

lexicon of emotions specific to domain of study; 

3.  Features Extraction: Features can be extracted by a 

simple projection of the ontology on the elementary 

discourse units (EDUs); 

4. Associating UEOs to Features: Each extracted 

feature should be associated to one or more elementary 

opinions units in order to extract its semantic 

orientation; 

5. Classification: The last phase of our work is to 

classify the identified opinions into positive or 

negative classes using supervised classification 

techniques. 

4 CONCLUSION 

In this paper we presented our approach based on an ontological 

exploration of Arabic texts. Our method is promising because 

the use of ontologies improves the extraction of features and 

facilitates the association between opinions expressions and 

opinionated features of the object. On the one hand, domain 

ontology is useful within its list of concepts which carry much 

semantic data in the system. The use of ontology concepts labels 

can recognize terms that refers to the same concepts and 

provides a hierarchy between these concepts. On the other hand, 

ontology is useful to its list of properties between concepts that 

can recognize the opinions expressed on the implicit features. 
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