
Proof-Carrying Data and Hearsay Arguments
from Signature Cards

Alessandro Chiesa∗ Eran Tromer
Massachusetts Institute of Technology

Computer Science and Artificial Intelligence Laboratory
32 Vassar St., Cambridge, MA 02139, USA

{alexch,tromer}@csail.mit.edu

Abstract:
Design of secure systems can often be expressed as ensuring that some property is maintained at every step
of a distributed computation among mutually-untrusting parties. Special cases include integrity of programs
running on untrusted platforms, various forms of confidentiality and side-channel resilience, and domain-specific
invariants.
We propose a new approach, proof-carrying data (PCD), which circumnavigates the threat of faults and leakage
by reasoning about properties of the output data, independently of the preceding computation. In PCD, the
system designer prescribes the desired properties of the computation’s outputs. Corresponding proofs are
attached to every message flowing through the system, and are mutually verified by the system’s components.
Each such proof attests that the message’s data and all of its history comply with the specified properties.
We construct a general protocol compiler that generates, propagates and verifies such proofs of compliance,
while preserving the dynamics and efficiency of the original computation. Our main technical tool is the
cryptographic construction of short non-interactive arguments (computationally-sound proofs) for statements
whose truth depends on “hearsay evidence”: previous arguments about other statements. To this end, we attain
a particularly strong proof of knowledge.
We realize the above, under standard cryptographic assumptions, in a model where the prover has black-box
access to some simple functionality — essentially, a signature card.

Keywords: secure distributed systems; computationally-sound proofs

1 Introduction
Security in distributed systems typically requires

maintaining properties across the computation of
multiple, potentially malicious, parties. Even when
human participants are honest, the computational de-
vices they use may be faulty (due to bugs or tran-
sient errors [12]), leaky (e.g., covert and side channels
[48]) or adversarial (e.g., due to components from un-
trusted sources [11]).

We address the general problem of secure dis-
tributed computation when all parties are mutually
untrusting and potentially malicious. Computation
may be dynamic and interactive, and “secure” may
be any property that is expressible as a predicate that
efficiently checks each party’s actions.

Our approach, proof-carrying data (PCD), is based
on augmenting every message passed in the dis-
tributed computation with a short proof string attest-
∗I dedicate this paper to my father Corrado Chiesa. He was

a loving dad and wonderful person.

ing to the fact that the message’s data, along with all
of the distributed computation leading to that mes-
sage, satisfies the desired property. These proofs are
efficiently produced, verified and aggregated at every
node. Ultimately, the proof string attached to the sys-
tem’s final output attests that the whole computation
had the desired property.

1.1 Motivation and Goals
Motivation. Let us consider a few examples of se-
curity properties whose attainment, in the general
case and under minimal assumptions, is a major open
problem — and how they can be approached in the
framework of proof-carrying data.

• Integrity. Consider parties engaged in a distributed
computation. Each party is supposed to transmit
messages produced by executing some program on
his own inputs and earlier messages received from
other parties. Can we obtain evidence that the
computation’s final output is indeed the result of

310

PROOF-CARRYING DATA AND HEARSAY ARGUMENTS FROM SIGNATURE CARDS

correctly following the prescribed program in the
aforementioned process? For example, if the com-
putation consists of a physics simulation (whether
realistic or that of a virtual online world), can we
obtain evidence that all parties have “obeyed the
laws of physics”?
• Information flow control. Confidentiality and pri-

vacy are typically expressed as a negative condition
forbidding certain effects. However, following the
approach of information flow control (IFC) [27][55],
one may instead reason about what computation is
allowed and on what inputs.
Thus, within a distributed computation, we can de-
fine the security property of intermediate results as
being “consistent with a distributed computation
that follows the IFC rules”. In IFC, intermediate re-
sults are labeled according to their confidentiality;
PCD augments these with a proof string attesting
to the validity of the label. Ultimately, a censor at
the system perimeter lets through only the “non-
secret” outputs, by verifying their associated label
and proof string. Because verification inspects only
the (augmented) output, it is inherently unaffected
by anomalies (faults and leakage) in the preceding
computation; only the censor needs to be trusted
to properly verify proof strings.
• Fault isolation and accountability. Consider a dis-

tributed system consisting of numerous unreliable
components. Let any communication across com-
ponent boundaries carry a concise proof of correct-
ness, and let each component verify the proofs of its
inputs and generate proofs for its outputs. When-
ever verification of a proof fails, the computation is
locally aborted and outputs a proof of the wrong-
doing. Damage is thus controlled and attributed.
In principle this may be realized at any scale, from
individual chips to whole organizational units.

Many applications involve multiple such goals. For
example, in cloud computing, clients are typically in-
terested in both integrity [37] and confidentiality [62].
Further details and examples appear in Section 5.
Goals. Generalizing the above, we can state our goal:
a compiler that, given a protocol for distributed com-
putation, and a security property (in the form of a
predicate to be verified at every node of the computa-
tion), yields an augmented protocol that verifies the
security property.

We wish this compiler to respect the original dis-
tributed computation, i.e., it should preserve commu-
nication, dynamics and efficiency:

• Preserve the communication graph: Parties should

not be required to engage in additional communi-
cation channels beyond those of the original dis-
tributed computation. For example: protecting the
distributed computation carried out by a system
of hardware components should not require each
chip to continuously communicate with all other
chips; agents executing in the “cloud” should re-
main trustworthy even when their owners are of-
fline; and parties should be able to conduct joint
computation on a remote island and later re-join a
larger multiparty computation.
• Allow dynamic computations: The compiler should

allow for inputs that are provided on the fly (e.g.,
determined by human interaction, random pro-
cesses, or nondeterministic choices).
• Minimize the blowup in communication and com-

putation: The induced overhead in communication
between parties, and computation within parties,
should be kept at a minimum (e.g., at most a local
polynomial blowup).

This implies, in particular, that scalability is pre-
served: if the original computation can be jointly con-
ducted by numerous parties, then the compiler pro-
duces a secure distributed computation has the same
property.

1.2 Our Approach

Proof system. In our approach, proof-carrying data,
every piece of data flowing through a distributed com-
putation is augmented by a short proof string that
certifies the data as compliant with some desired prop-
erty. These proofs can be propagated and aggregated
as the computation proceeds.

Let us illustrate our approach by a simple scenario.
Alice has some input x and a function F . She com-
putes y := F (x) at a great expense, along with a
proof string πy for the claim “y = F (x)”, and then
publishes the pair (“y = F (x)”, πy) on her webpage.
A week later, Bob comes across Alice’s webpage, no-
tices the usefulness of F (x), and and wants to use it
as part of his computations: he picks a function G
and computes z := G(y). To convince others that
the combined result is correct, Bob also generates a
new proof string πz for the claim “z = G(F (x))”, us-
ing both the transcript of his own computation of G
on y, and Alice’s proof string πy. (See Figure 1 for
a diagram.) Crucially, Bob does not have to recom-
pute F (x). The size of πz is merely polylogarithmic
in Bob’s own work (i.e., the time to compute G on y
and the size of the statement “z = G(F (x))”), and is
essentially independent of the past work by Alice.

We generalize the above scenario to any distributed

311

A. CHIESA AND E. TROMER

final

verifier

m
1, π

1

m
2
, π2

m3, π3

m4
, π4

m
5 , π

5
m6

, π6

m
7 , π

7

Figure 2: A distributed computation in which parties send messages mi augmented by proof strings πi.

Alice Bob

x, F G

y

πy

“z = G(F (x))”“y = F (x)”

z

πzfor for

Figure 1: The “F and G” example.

computation. Also, we generalize “correctness” to be
any property that should hold at every node of the
computation. More precisely, we consider properties
that can be expressed as a requirement that every step
in the computation satisfies some compliance predi-
cate C computable in polynomial time; we call this
notion C-compliance. Thus, each party receives in-
puts that are augmented with proof strings, computes
some outputs, and augments each of the outputs with
a new proof string that will convince the next party
(or the verifier of the ultimate output) that the out-
put is consistent with a C-compliant computation.
See Figure 2 for a high-level diagram of this idea.1
We thus define and construct a proof-carrying data
(PCD) system primitive that fully encapsulates the
proof system machinery, and provides a simple but
very general “interface” to be used in applications.

PCD generalizes the “incrementally verifiable com-
putation” of Valiant [68]. The latter compiles a (pos-
sibly super-polynomial-time) machine into a new ma-
chine that always maintains a proof for the correct-
ness of its internal state. PCD extends this in sev-
eral essential ways: allowing for the computation to
be dynamic (interactive and nondeterministic); al-

1Moreover, we obtain a proof-of-knowledge property (see
[34, Sec. 4.7] for the definition), which implies that not only
does there exist a C-compliant computation consistent with the
output, but moreover this computation was actually “known”
to whoever produced the proof. This is essential for appli-
cations that employ cryptographic functionality that is secure
only against computationally-bounded adversaries, since an ef-
ficient cheating prover can only “know” efficient C-compliant
computation.

lowing for multiple parties and arbitrary communi-
cation graphs; and allowing for an arbitrary compli-
ance predicate, instead of considering only the special
case of correctness. These greatly expand expressibil-
ity, but entail significant technical challenges (for ex-
ample, dynamic computation forces us to recursively
aggregate proofs in polynomially-long chains, instead
of the logarithmically-deep trees of [68], and this re-
quires a much stronger knowledge extractor). Cru-
cially, our construction circumvents a major barrier
which precluded a satisfying proof of security even
for the simpler functionality of incrementally verifi-
able computation.2

Construction and tools. Our main technical
tool, potentially of independent interest, is assisted-
prover hearsay-argument (APHA) systems. These are
short non-interactive arguments (computationally-
sound proofs) for statements whose truth depends on
“hearsay evidence” from previous arguments, in the
sense of the above “F and G” example. As pointed
out by Valiant [68], this is not implied by standard
soundness: the latter merely says that if the verifier
for a statement “z = G(F (x))” is convinced then there
exists a witness for that statement. But if the witness
is supposed to contain a proof string πy for another
statement y = F (x), the mere existence of πy (that
would be accepted by the verifier) is useless: such
πy may exist regardless of the truth of the statement
“y = F (x)”, since the soundness of the argument is
merely computational. We actually need to show that
if the proof string for “z = G(F (x))” was generated
efficiently, then a valid proof string for “y = F (x)” can
be generated with essentially the same efficiency (and
acceptance probability) and is thus also convincing.

2Valiant [68] offers two constructions: one that assumes the
existence of a cryptographic primitive that is nonstandard and
arguably implausible [68, Theorem 1], and one whose overall se-
curity is conjectured directly without any reduction [68, Section
1.3 under “The Noninteractive CS Knowledge Assumption”].
The difficulty seems inherent; see Section 3.2. In our model, we
attain provable security under standard generic cryptographic
assumptions.

312

PROOF-CARRYING DATA AND HEARSAY ARGUMENTS FROM SIGNATURE CARDS

Technically, this is captured by a particularly strong
proof-of-knowledge property.

Our construction of APHA systems is built on
argument systems [38][14]. Specifically, we use
universal arguments [6] which (following [43] and
computationally-sound proofs [53]) invoke the PCP
theorem [5] to achieve compact proofs and efficient
verification. However, such argument systems do not
by themselves suffice: where they offer a strong proof-
of-knowledge property [30][68], they do so by rely-
ing on random oracles, which precludes nesting of
proofs since the underlying PCP system does not
relativize [31][18]. Even in the restricted case of
incrementally-verifiable computation [68], this diffi-
culty precluded a satisfying proof of security.

We address this problem, both in general and for
the special case of [68], by extending the model with
a new assumption: an oracle that is invoked by the
prover, but not by the verifier. The former facil-
itates knowledge extraction, while the latter allows
for aggregation of proof strings. The oracle provides
a simple signed-input-and-randomness functionality:
for every invocation, it augments the input x with
some fresh randomness r, and outputs r along with a
signature on (x, r) under a secret key sk embedded in
the oracle. This is discussed next.

1.3 Model and Trust
We assume that all parties have black-box access

to the aforementioned signed-input-and-randomness
functionality. Concretely, we think of this oracle as
realized by hardware tokens, such as existing signa-
ture cards, TPM chips or smartcards. It can also be
implemented by a trusted Internet service (see [21] for
a demonstration). Alternative realizations include ob-
fuscation and multiparty computation; see Section 3.6
for further discussion.

Comparable assumptions have been used in pre-
vious works, as setup assumptions to achieve
universally-composable functionality that is otherwise
impossible [16]. In this context, Hofheinz et al. [39] as-
sume signature cards similar to ours. The main differ-
ences in the requisite functionality is that we require
the card to generate random strings and include them
in its output and signature (a pseudorandom gener-
ator suffices — see Section 3.6), and to use slightly
stronger signature schemes (see Section 2).

The more general result of Katz [42] assumes that
parties can embed functionality of their choice in se-
cure tokens and send it to each other; follow-up works
in similar models include [54][17][25]. However, in our
case we cannot afford a model where parties gener-
ate tokens and send them to all other parties, since

}
collision-resistant

hashing

universal

arguments

signature

schemes

APHA

systems

PCD

systems

assisted-prover model

(SIR oracle)

Figure 3: Collision-resistant hashing schemes imply
public-coin constant-round universal arguments and se-
cure signature schemes (with the additional property
discussed in Section 2). From these two, we derive
APHA systems, and then PCD systems.

this does not preserve the communication graph of
the original computation. Thus, our model is closer
to that of [39].

For simplicity, we assume the following setup and
trust model. A trusted party generates a signa-
ture key pair (sk, vk) and many signed-input-and-
randomness tokens containing sk. Each party is told
vk and receives a token. All parties trust the manu-
facturer and the tokens, in the sense that each party,
upon seeing a signature on some (x, r) that verifies
under vk, believes that the signature was produced
by some token queried on (x, |r|).

One can easily adapt this to a certificate-authority
model where each token uses its own secret key sk,
and publishes the corresponding public key vk along
with a certificate for vk (i.e., a signature under the
key of a trusted certificate authority).3

1.4 Our Results
In summary, we present the following results:

An argument system for hearsay. We define
assisted-prover hearsay-argument (APHA) systems:
non-interactive arguments for NP which can effi-
ciently prove statements that recursively rely on ear-
lier APHA proof strings, using a very strong proof-of-
knowledge property. We construct these in a model
where the prover has black-box access to a simple

3Technically, this variant is realized by tweaking the PCD
machine of Section 4.3 to verify the authority’s signature on
this vk.

313

A. CHIESA AND E. TROMER

stateless functionality, namely signing (under a se-
cret key) every input along with fresh randomness.
Our construction relies on standard generic assump-
tions: collision-resistant hashing schemes and signa-
ture schemes (see Figure 3).
Distributed computations and proof-carrying
data. We propose proof-carrying data (PCD) as a
framework for expressing and enforcing security prop-
erties, and formally define proof-carrying data (PCD)
systems that capture the requisite protocol compiler
and computationally-sound proof system. We con-
struct this primitive under the same assumptions as
above (see Figure 3).
Applications. We discuss a number of open prob-
lems in the security of real-world applications, where
PCD offers a powerful solution approach by circum-
venting current difficulties.

1.5 Previous Approaches

Proof aggregation As discussed in Section 1.2, our
aggregation-of-proofs approach is related to incremen-
tally verifiable computation [68]. Both are built on
top of efficient argument systems [38][14]: specifically,
CS proofs [53] and universal arguments [6].

Metaproofs [65] also involve recursive aggregation
of proofs, but using very different techniques; these
seek statistical soundness rather than conciseness and
efficient verification.

Signatures of knowledge [19] and their main appli-
cation of delegatable anonymous credentials [8] yield
proofs that are aggregatable, but at the expense of
the proof size or the number of times aggregation (in
their case, delegation) is allowed.

The problem of ensuring properties of a distributed
computation has been previously studied by a variety
of approaches.
Secure multiparty computation. Secure multi-
party computation [36][9][20] considers the problem of
correctly executing multiparty protocols in the pres-
ence of adversaries. Our approach follows that of [36]
in that parties prove to each other, by cryptographic
means, that they have been behaving correctly. The
main differences are as follows. First, we address a
more general setting, where the computation does not
have to be known in advance to the parties. Second,
[36][9][20] is unscalable in the sense of not preserving
the communication graph of the original computation:
even the simple “F and G” example of Section 1.2,
would require everyone on the Internet to talk to each
other. By contrast, in the PCD approach, parties per-
form only local computation to produce proof strings

“on the fly”, and attach them to outgoing data pack-
ets. Conversely, the constructions in this paper are
not zero-knowledge.4

Distributed algorithms. Distributed algo-
rithms [52] typically address achieving specific
properties of a global nature (e.g., consensus). By
contrast, we offer a general protocol compiler for
ensuring local properties of individual steps in the
distributed computation. In this sense the problems
are complementary. Indeed, trusted tokens turn out
to be a powerful tool for global properties as well, as
shown by A2M [22] and TrInc [50].

Platforms, languages, and static analysis. In-
tegrity can be achieved by running on suitable fault-
tolerant systems. Confidentiality can be achieved
by platforms with suitable information flow control
mechanisms [27][55], e.g., at the operating-system
level [47][69]. Various invariants can be achieved by
statically analyzing programs, and by programming
language mechanisms such as type systems [3][26].

The inherent limitations of these approaches (be-
side their difficulty) is that the output of such com-
putation can be trusted only if one trusts the whole
platform that executed it; this renders them ineffec-
tive in the setting of mutually-untrusting distributed
parties.

Proof-carrying code. Proof-carrying code (PCC)
[56] addresses scenarios in which a host wishes to ex-
ecute code received from untrusted producers, and
would like to ascertain that the code adheres to some
rules (e.g., because the execution environment is not
inherently confining). In the PCC approach, the
producer augments the code with formal, efficiently-
checkable proofs of the desired properties — typically,
using the aforementioned language or static analysis
techniques. Such systems have been built for scenar-
ios such as packet filter code [57], mobile agents [58]
and compiled Java programs [23].

PCC and PCD thus address disjoint scenarios, by
different techniques (see Table 1 for a summary).
However, the two approaches can be composed: a po-
tentially powerful way to express security properties
is to require messages to be correctly produced by
some program prg that has desired properties (e.g.,
type safety), and then prove these properties of prg
using proof-carrying code. Here, the PCD compli-
ance predicate C consists of running the PCC verifier
on prg and then executing prg.

4Zero-knowledge PCD systems are naturally defined, and
necessary for some of our suggested applications. We do not
see fundamental barriers to their existence. Their efficient con-
struction is a subject of present investigation.

314

PROOF-CARRYING DATA AND HEARSAY ARGUMENTS FROM SIGNATURE CARDS

Proof-carrying data Proof-carrying code
Message data executable code

Statement about specific past history all future executions
Proof method cryptography + formal methods

compliance predicate
Main computation prover verifier

executed by (sender) (host)
Recursively aggregatable yes n/a

Table 1: Comparison between proof-carrying data and proof-carrying code.

Dynamic analysis. Dynamic analysis monitors the
properties of a program’s execution at run time (e.g.,
[59][66][46]). Our approach can be interpreted as ex-
tending dynamic analysis to the distributed setting,
by allowing parties to (implicitly) monitor the pro-
gram execution of all prior parties without actually
being present during the executions.
Fabric. The Fabric system [51] is similar to PCD in
motivation, but takes a very different approach. Fab-
ric addresses execution in a network of nodes which
have partial trust in each other. Nodes express their
information flow and trust policies, and the Fabric
platform (through a combination of static and run-
time techniques) ensures that computation and data
will be delegated across nodes only when requisite
trust relations exist for preserving the information
flow policy. Thus, Fabric is a practical system that al-
lows “as much delegation as we are sure is safe” across
a system of partially-trusting nodes (where a violated
trust relation will undermine security). In contrast,
PCD allows (somewhat different) security properties
to be preserved across an arbitrary network of fully-
mistrustful nodes, but with a much higher overhead.

1.6 Organization
In Section 2, we set up preliminaries. In Section 3,

we define and construct hearsay-argument systems,
and discuss the inherent difficulties involved as well
as their resolution by assisted-prover model. In Sec-
tion 4, we define proof-carrying data systems and con-
struct them using the results of the previous sections.
In Section 5, we discuss some potential applications.
In Section 6, we conclude and suggest open problems.

2 Preliminaries
General notation. We let ε denote the empty string,
and ℕ the positive integers. For n ∈ ℕ, we denote by
[n] the set {1, . . . , n}. We say that a function µ : ℕ→
[0, 1] is negligible if, for every positive polynomial p,
µ(n) < 1/p(n) for all sufficiently large n.

If M is a Turing machine, then 〈M〉 is its descrip-
tion (on occasion identified with M) and timeM (x) is
the time that M takes to halt on input a string x. If
C is a circuit C, then 〈C〉 is its representation and
|C| is its size. For a probability distribution D, we
denote by y ← D drawing an element from D. Simi-
larly, y ←M(x) denotes the output of the machine or
circuit M on input x; if M is a probabilistic machine
then y is a random variable.

For a directed graph G = (V,E), and vertex v ∈ V ,
in(v) are the incoming edges of v, out(v) its outgoing
edges, parents(v) are its neighbors across in(v), and
children(v) are its neighbors across out(v).

Universal arguments. We use universal argu-
ments [6], a variant of CS proofs [53]. These are
an efficient interactive argument system for proving
membership into the universal set SU , defined as the
set of all tuples y = (M,x, t) for which there exists a
witness w such that M(x,w) accepts within t steps.
We denote by RU the witness relation of the universal
set, and by RU (y) the set of valid witnesses for a given
instance y.

A universal argument consists of a prover PUA and
a verifier VUA. For an instance y = (M,x, t), univer-
sal arguments are efficient in the sense that the com-
plexity of the verifier VUA is polynomial in |y|, i.e., in
poly(|M |+|x|+log t). Moreover, the complexity of the
prover PUA is polynomial in |M |+ |x|+ timeM (x,w).
Beyond the usual computational soundness required
of an argument system, universal arguments also sat-
isfy a weak proof-of-knowledge property. This prop-
erty (defined in [6]) is essential in one of our proofs.

The universal argument construction of Barak and
Goldreich [6] is a public-coin, 4-message protocol built
from any collision-resistant hashing scheme ([35, Sec.
6.2.2.2]). The aforementioned efficiency comes from
the use of a PCP system [5] for compressing proofs
(following Micali [53] and Kilian [44]). While PCP
constructions are notorious for being efficient only in
the asymptotic sense, there are indications [10] that
recent progress approaches practicality.

315

A. CHIESA AND E. TROMER

Signature schemes. We denote a signature scheme
SIG by a triple (GSIG, SSIG, VSIG) consisting of the key
generation, signing, and verification algorithms re-
spectively. (See [35, Sec. 6.1].)

We use signature schemes that, beyond satisfying
the standard property of security against chosen mes-
sage attack, also satisfy the (independent) property of
security against signature-only forgery: it is infeasible
for a chosen-message attack to forge a hitherto-unseen
signature that is valid for any message (the forger is
not required to say which one).

It is simple to construct such a scheme: start from
a signature scheme that is secure against chosen mes-
sage attack, and modify its signature algorithm to
append the message to the signature (and modify
the verification algorithm accordingly). However, the
parameters of our construction require concise signa-
tures whose length is independent of the message (i.e.,
merely polynomial in the security parameter).

This can be achieved using a hash-then-sign ap-
proach. Starting with any super-secure signature
scheme5 (G′SIG, S

′
SIG, V

′
SIG) and a collision-resistant

hashing scheme Hs ([35, Sec. 6.2.2.2]), we derive
(GSIG, SSIG, VSIG) as follows. The key generation al-
gorithm GSIG invokes (sk′, vk′)← G′SIG, and generates
a public seed s for the hash function. To sign a mes-
sage m, SSIG((sk′, s),m) computes h = Hs(m) and
σ′ = S′SIG(sk, h), and outputs σ = (h, σ′). To verify an
alleged signature σ = (h, σ′) for m, VSIG((vk, s),m, σ)
computes h̃ = Hs(m), verifies h = h̃ and runs
V ′SIG(vk′, h, σ′). Security is easily verified.

The super-secure signature schemes used above are
known to exist if one-way functions exist [35, Theo-
rem 6.5.2]. Moreover, there are efficient constructions
based on the computational Diffie-Hellman assump-
tion in bilinear groups [13], and generic transforma-
tions from regular signature schemes [40].

Therefore, in the rest of this paper, when we men-
tion a signature scheme SIG, we shall assume that it
is secure against chosen message attack and against
signature-only forgery, and that it produces short
signatures. This is without loss of generality, be-
cause our constructions already assume the existence
of collision-resistant hashing schemes (e.g., to obtain
universal arguments).

5A super-secure signature scheme (also called a strongly
unforgeable signature scheme) is one where no new message-
signature pair can be forged, even for messages that were al-
ready signed by the chosen-message oracle. See [35, Section
6.5.2].

3 An Argument System for Hearsay
3.1 Overview

We introduce a new argument system for NP, which
can prove statements based on “hearsay evidence”,
i.e., statements expressed by a decision procedure that
itself relies on proofs generated by earlier, recursive
invocations of the proof system (as in the “F and G”
example of Section 1.2).

At a high level, our goal is a proof system with the
following features:
• Non-interactive, so that (i) its proof strings can be

forwarded and included as part of the “hearsay ev-
idence” for subsequent proofs, and so that (ii) its
proof strings can be used to augment unidirectional
communication in proof-carrying data.
• Efficient, so that proof strings (and their verifi-

cation) are much shorter than the time to decide
statements they attest to.
• Aggregatable, which means that it can generate an

argument for a statement decided by a procedure
that verifies “hearsay evidence” that is the aggre-
gation of at most polynomially many arguments.

We call an argument system that satisfies the above
set of properties a hearsay-argument system. In
our construction the prover is assisted by an oracle,
so we define and obtain an assisted-prover hearsay-
argument system.

Next, we explain why achieving the above proper-
ties involves a fundamental difficulty, and show how
we resolve it by introducing an assisted prover. After
that, we define the new argument system, then state
which assumptions are sufficient to construct it, and
then exhibit a construction for those assumptions. Fi-
nally, we discuss the realizability of an assisted prover.

3.2 Difficulties and Our Solution
In constructing an argument system that satisfies

the properties discussed in Section 3.1, two opposing
requirements arise:
1. We must not use oracles. While we know how

to construct efficient argument systems using dif-
ferent approaches (using a short PCP and a Merkle
tree [44][53][6], or using a long PCP and homo-
morphic encryption [41]), all known efficient argu-
ment system constructions are based on the PCP
theorem, and there is some evidence that this is
inherent [63]. Since the PCP theorem does not
relativize [31] (not even with respect to a random
oracle [18]), these systems cannot prove statements
that are decided by a procedure that accesses an
oracle. Thus, to allow recursive aggregation of
proofs, it seems the system cannot rely on oracles.

316

PROOF-CARRYING DATA AND HEARSAY ARGUMENTS FROM SIGNATURE CARDS

2. We must use oracles. Efficient non-interactive
argument systems for NP are only known to ex-
ist in the random oracle model, where the verifier
needs access to the random oracle. Moreover and
more fundamentally, in order to prove statements
involving “hearsay evidence”, we need a proof-of-
knowledge property — as discussed in Section 1.2,
mere soundness does not suffice. To support re-
peated aggregation of such proofs, the proof-of-
knowledge must be of a very strong form: a very
efficient online [60][30] knowledge extractor with
a tight success probability. The only known ap-
proach to such knowledge extraction is to force the
prover to expose the witness in queries to an oracle.

Previous difficulties. The tension between the
above two requirements arises in Valiant’s work [68].
On one hand, he uses CS proofs as non-interactive
arguments. Hence, his construction is ill-defined: it
requires generating (PCP-based) CS proofs for state-
ments decided by a procedure that needs oracle ac-
cess. Therefore, one can at best conjecture (as done
in [68]) that the construction, once the random ora-
cle has been instantiated by an appropriate function
ensemble, is secure.

Moreover, in order to prove the existence of an
efficient knowledge extractor with a tight success
probability, he exhibits a procedure that examines a
prover’s calls to the random oracle. However, once
the random oracle has been instantiated, the proce-
dure fails since there are no oracle calls to examine.

This difficulty seems inherent: Valiant’s construc-
tion uses an online knowledge extractor that observes
an execution of a prover only through its inputs, out-
puts, and oracle calls (of which there are none after in-
stantiation), and the online knowledge extractor must
be able to extract a witness of size 3n given a proof
string of size only n. The existence of such a pro-
cedure would imply that for any NP language, the
witnesses can be compressed by a factor of 3, which
seems unlikely.

Lastly, note that the proof-of-knowledge property
we require is even stronger than [68] aimed for, in
terms of the knowledge extractor’s tightness. This is
because incrementally verifiable computation allows
proofs to be aggregated in a logarithmically-deep tree,
so a multiplicative blowup can be tolerated at ev-
ery extraction step. Conversely, PCD systems must
handle polynomially-long chains of proofs, and can
thus tolerate an additive blowup per extraction step;
hence the knowledge extractor can do little more than
merely run the prover.
Our solution. We manage to simultaneously satisfy
the above requirements, by requiring the prover to

access an oracle but not requiring the verifier to do
so. A high-level description follows.

We start with the interactive protocol for public-
coin, constant-round universal arguments. By
granting the prover access to a signed-input-and-
randomness oracle (informally defined in Section 1.4
and to be formally defined in Section 3.4), we turn this
into a non-interactive protocol: the prover obtains the
public-coin challenges from the oracle instead of the
verifier (in a way that also enforces the proper tem-
poral dependence).

The oracle signs its answers using a public-key sig-
nature scheme, so that the oracle’s random answers
are verifiable without access to the oracle. This asym-
metry breaks the tension of the two requirements
above, i.e., it breaks the “PCP vs. oracles” tension.

Additionally, we require the prover to obtain a sig-
nature for the witness that he uses to generate an
argument, thus forcing the prover to query the oracle
with the witness. This yields a very strong form of
proof-of-knowledge property.

We exploit two (related) properties of the oracle:
explicitness and temporal dependence. Seeing the or-
acle’s signature on (x, r) implies that r was drawn
at random after x was explicitly written down. In
the construction, x will be (for example) a purported
prover message in an interactive argument, and r will
be the verifier’s (public-coin) response. Such forc-
ing of temporal ordering is reminiscent of the Fiat-
Shamir heuristic [29]. Extraction of witnesses from
oracle queries was used by Pass [60], Fischlin [30] and
Valiant [68]. Our approach of using signatures to force
oracle queries is similar in spirit to that of Chandran
et al. [17].

The introduction of an oracle accessible by the
prover is, of course, an extra requirement of our
model. Yet given the discussion above, it seems in-
evitable. In Section 3.6, we argue that the specific or-
acle that we choose, a signed-input-and-randomness
oracle, is reasonable in practice.

3.3 Definition of APHA Systems
We define assisted-prover hearsay-argument

(APHA) systems and discuss their proper-
ties. An APHA system is a triple of machines
(GAPHA, PAPHA, VAPHA) that works as follows:
• the oracle generator GAPHA: for a security param-

eter κ ∈ ℕ, GAPHA(1κ) outputs the description of a
probabilistic6 stateless oracleO to assist the prover,
together with O’s verification key vk;
6 While our constructions are given for a probabilistic oracle,

in Section 3.6 we discuss how to “derandomize” the oracle and
make it deterministic.

317

A. CHIESA AND E. TROMER

• the prover PAPHA: for a verification key vk, an
instance y = (M,x, t), and a string w such that
(y, w) is in the witness relation RU of the univer-
sal set SU (i.e., the machine M , on input x and w,
accepts within t steps), POAPHA(vk, y, w) outputs a
proof string π for the claim that y ∈ SU ; and
• the verifier VAPHA: for a verification key vk, an in-

stance y, and a proof string π, VAPHA(vk, y, π) ac-
cepts if π convinces him that y ∈ SU .

The triple (GAPHA, PAPHA, VAPHA) must satisfy three
properties — the first two are essentially the
verifying and proving complexity requirements of
computationally-sound proofs and universal argu-
ments, and the third one is a form of proof-of-
knowledge property (that is strictly stronger than the
regular one [34, Sec. 4.7]).

First, proof strings generated by the prover should
be efficiently verifiable by the verifier: VAPHA halts in
time that is polynomial in the security parameter κ
and the length of the instance y; in particular, the
length of a proof string π is also so bounded.

Second, the prover should be able to prove true
theorems using a reasonable amount of resources:
whenever it is indeed the case that (y, w) ∈ RU ,
POAPHA(vk, y, w) always convinces VAPHA; moreover,
PAPHA halts in time that is polynomial in the secu-
rity parameter κ, the size of the description ofM , the
length of x, and timeM (x,w). (Note that timeM (x,w)
is the actual time it takes for M to halt on input x
and w, and not the upper bound t.)

Third, there exists a fixed list extractor circuit LE
of size poly(κ) such that, for any (possibly cheating)
prover circuit P̃ of size poly(κ) that outputs an in-
stance y and proof π that convince VAPHA, LE pro-
duces a valid witness for y in the following sense.
By examining only the oracle query-answer tran-
script 〈P̃ (vk), O〉 of P̃ , LE produces a list of triples
{(yi, πi, wi)}i with the property that there exists some
triple (yj , πj , wj) for which yj = y, πj = π, and for
every such triple wj is a valid witness for y. This
implication holds with all but negligible probability
(over the output of GAPHA). Note that LE is not ex-
plicitly told which y or π to look for. Formally:

Definition 1 (APHA System). An assisted-prover
hearsay-argument system with security parame-
ter κ is a triple of polynomial-time machines
(GAPHA, PAPHA, VAPHA), where GAPHA is a probabilis-
tic, PAPHA is deterministic with oracle access, and
VAPHA is a deterministic, that satisfies the following
conditions:
• Efficient verification: There exists a polynomial p

such that for any κ ∈ ℕ, (O, vk) ∈ GAPHA(1κ), in-

stance y = (M,x, t), and proof string π,

timeVAPHA(vk, y, π) ≤ p(κ+ |y|) .

In particular, |π| ≤ p(κ+ |y|), i.e., the proof string
length is poly(κ+ |〈M〉|+ |x|) + polylog(t).
• Completeness via a relatively-efficient prover: For

every κ ∈ ℕ and (y, w) ∈ RU ,

Pr
[
VAPHA(vk,y, π) = 1

∣∣∣
(O, vk)← GAPHA(1κ) ;

π ← POAPHA(vk, y, w)
]

= 1

(where the probability is taken over the internal
randomness of GAPHA and O). Furthermore, there
exists a polynomial p such that for every κ ∈ ℕ,
(O, vk) ∈ GAPHA(1κ), and ((M,x, t), w) ∈ RU ,

timePOAPHA

(
vk, (M,x, t), w

) ≤
p
(
κ+ |〈M〉|+ |x|+ timeM (x,w)

)
.

Note that timeM (x,w) ≤ t.
• List extraction: There exists a list extractor circuit

LE such that for every (possibly cheating) prover
circuit P̃ of size poly(κ), for all sufficiently large κ,
if P̃ convinces VAPHA then LE extracts a list con-
taining a witness:

Pr
[
VAPHA(vk, y, π) = 1 −→((
∃ (yi, πi, wi) ∈ extlist s.t. yi = y, πi = π

)
and
(
∀ (yi, πi, wi) ∈ extlist

s.t. yi = y, πi = π : (yi, wi) ∈ RU
)) ∣∣∣

(O, vk)← GAPHA(1κ) ; (y, π)← P̃O(vk) ;

extlist← LE
(〈
P̃ (vk), O

〉)]
> 1− µ(κ)

(where the probability is taken over the internal
randomness of GAPHA and O), for some negligible
function µ. Furthermore, |LE| is poly(κ).

Proof of knowledge. The list-extraction property
implies the standard proof-of-knowledge property, in
which a knowledge extractor directly outputs a wit-
ness corresponding to an instance-proof pair that con-
vinces the verifier (indeed, the knowledge extractor
need only run the list extractor LE and locate the rel-
evant triple in the list).
Adaptive soundness. As always, proof-of-
knowledge implies soundness: if the prover convinces
the verifier (with probability better than 1/p(κ)) then

318

PROOF-CARRYING DATA AND HEARSAY ARGUMENTS FROM SIGNATURE CARDS

a witness can be extracted with nonzero probability
and thus exists. Moreover, APHA systems are
adaptively sound, i.e., soundness holds even when
the prover choose the instance for which he wishes
to produce a proof string. In particular, the instance
may depend on the oracle and vk.

3.4 Construction of an APHA System
In the assisted-prover model, every party has black-

box access to a certain functionality. In our case, the
black-box functionality is defined as follows.7

Definition 2 (Signed-Input-and-Randomness func-
tionality). Let SIG = (GSIG, SSIG, VSIG) be a signa-
ture scheme. Let κ ∈ ℕ be the security parameter
of SIG. Given sk1 and sk2 (generated by GSIG(1κ)),
the signed-input-and-randomness (SIR) functionality
with respect to sk1 and sk2, denoted Osk1,sk2 , is given
by the probabilistic machine defined as follows: On
input (x, s) where x ∈ {0, 1}∗ and s ≥ 0, Osk1,sk2 does
the following:

1. r ← {0, 1}s
2. If s = 0, σ ← SSIG(sk1, (x, r))
3. If s > 0, σ ← SSIG(sk2, (x, r))
4. Output (r, σ)

Our main technical result is constructing APHA
systems from constant-round public-coin universal ar-
guments and signature schemes:

Theorem 3.1 (APHA from universal arguments and
signatures). APHA systems whose oracle is signed-
input-and-randomness can be built from any signa-
ture scheme and (public-coin, constant-round) univer-
sal arguments.

Such public-coin, constant-round universal argu-
ments are known to exist if collision-resistant hash-
ing schemes exist [6, Theorem 1.1], and likewise for
signatures schemes (see Section 2). We thus deduce
the existence of APHA systems under a mild, generic
assumption:

Corollary 3.2 (Existence of APHA systems). As-
suming the existence of collision-resistant hashing
schemes, there exist APHA systems whose oracle is
signed-input-and-randomness.

Let us proceed to prove Theorem 3.1 by construct-
ing an APHA system, following the intuition pre-
sented in Section 3.2. The oracle generator GAPHA
is constructed as follows.

7The need for two separate keys arises for technical reasons
of avoiding thorny dependencies across the transitions in the
proof (Section 3.5).

Algorithm 1 (GAPHA). The oracle generator GAPHA,
on input a security parameter κ ∈ ℕ, does the follow-
ing:
1. (sk1, vk1)← GSIG(1κ)
2. (sk2, vk2)← GSIG(1κ)
3. vk ≡ (vk1, vk2)
4. 〈O〉 ≡ 〈Osk1,sk2〉, where Osk1,sk2 is a SIR

oracle
5. Output (〈O〉, vk)

To prove y ∈ SU , we will not invoke universal ar-
guments directly on the instance y = (M,x, t), but
rather on an a slightly larger augmented instance
yaug = (Maug, xaug, taug). The augmented decider ma-
chine Maug invokes M to check an (alleged) witness
w for y, and also verifies an (alleged) signature on y
and w. (The prover will be forced to query the ora-
cle on w in order to obtain such a signature, and this
will facilitate knowledge extraction.) Let us define the
subroutine AUG that maps y to yaug:
Algorithm 2 (AUG). Let p(κ,m) be a polynomial
that bounds the running time of VSIG with security
parameter κ on messages of length at most m. Fix a
security parameter κ ∈ ℕ and let (O, vk) ∈ GAPHA(1κ)
and parse vk as (vk1, vk2). Let y = (M,x, t) be an
instance, and let σ be an (alleged) signature on a wit-
ness for y. The subroutine AUG, on input (vk1, σ, y),
does the following:
1. xaug ≡ (vk1, σ, y)
2. taug ≡ t+ p(κ,m) where
m ≡ |((“inst-wit”, y, 1t), ε)|

3. Define Maug to be the machine that, on input
(x,w), works as follows
(a) Let b1 be the output of
VSIG(vk1, ((“inst-wit”, y, w), ε), σ)

(b) Let b2 be the output ofM(x,w) after running
for t steps

(c) Output b1 ∧ b2
4. Output yaug ≡ (Maug, xaug, taug)

We proceed to describe the construction of the
prover PAPHA and verifier VAPHA. Let p1 and p2 be
polynomials such that, given an instance y of length
n, the first message of VUA has length p1(n) and the
second message of VUA has length p2(n).8

Algorithm 3 (PAPHA). Fix a security parameter κ
and let (O, vk) ∈ GAPHA(1κ). Let y = (M,x, t) be
an instance and w be a string, supposedly such that
(y, w) ∈ RU . The prover POAPHA(vk, y, w) does the
following:

8For convenience, the construction here is specialized to the
2-round (4-message) universal arguments protocol of [6]. It nat-
urally generalizes to any constant-round public-coin protocol.

319

A. CHIESA AND E. TROMER

(“inst-wit”, y, w), 0

PUA VUA

a0 = (ε, σ)

a1 = (r1, σ1)

a2 = (r2, σ2)

a3 = (ε, σ3)

yaug, p1(|yaug|)

(resp
1
, a1), p2(|yaug|)

PAPHA

VAPHA
π = (π

′
, σ

′
)

r1

r2

resp
1

resp
2

(“proof”, π
′
), 0

O

O

O

O

y
?

∈ SU

PUA

VUA

Figure 4: Diagram for the construction of PAPHA; recall that tr ≡ (a1, resp1, a2, resp2) and π′ ≡ (σ, tr).

1. Obtain a signature of the witness. Call O with
query q0 ≡ ((“inst-wit”, y, w), 0) to obtain an-
swer a0 = (ε, σ).

2. Compute the augmented instance. Parse vk as
(vk1, vk2); compute yaug ← AUG(vk1, σ, y).

3. Simulate VUA’s first message. Call O with query
q1 ≡

(
yaug, p1(|yaug|)

)
to obtain answer a1 =

(r1, σ1).
4. Compute PUA’s first message. Execute the first

step of PUA(yaug, w), using r1 as the verifier’s first
message, to obtain resp1, the prover’s first re-
sponse.

5. Simulate VUA’s second message. Call O with query
q2 =
(
(resp1, a1), p2(|yaug|)

)
to obtain answer a2 =

(r2, σ2).
6. Compute PUA’s second message. Continue the

above execution of PUA(yaug, w), using r2 as the
verifier’s second message, to obtain resp2, the
prover’s second (and last) response.

7. Package the signature and (part of) the transcript
into a preliminary proof string. Define π′ ≡ (σ, tr),
where tr ≡ (a1, resp1, a2, resp2).

8. Obtain a signature on the instance and preliminary
proof. Call O with query q3 ≡ ((“proof”, π′), 0) to
obtain answer a3 = (ε, σ′).

9. Output the signed proof. Output π ≡ (π′, σ′).

Algorithm 4 (VAPHA). Fix a security parameter
κ and let (O, vk) ∈ GAPHA(1κ). Let y = (M,x, t)
be an instance and let π be an (alleged) proof string
for “y ∈ SU”. The verifier VAPHA(vk, y, π) does the
following:

1. Parse vk as (vk1, vk2); parse π as (π′, σ′), where
π′ ≡ (σ, tr), tr ≡ (a1, resp1, a2, resp2), a1 = (r1, σ1),
and a2 = (r2, σ2).

2. Verify that the signature is valid. Check that
VSIG(vk1, ((“proof”, π′), 0), σ′) = 1.

3. Compute the augmented instance.
yaug ← AUG(vk1, σ, y).

4. Verify that the transcript is consistent. Check that:
(a) VSIG(vk2, (yaug, r1), σ1) = 1 and
|r1| = p1(|yaug|)

(b) VSIG(vk2, ((resp1, a1), r2), σ1) = 1 and
|r2| = p2(|yaug|).

5. Verify that the transcript is convincing. Check that
the third step of VUA(yaug), using r1 and r2 as the
verifier’s first and second messages, and using resp1
and resp2 as the prover’s first and second messages,
accepts.

3.5 Correctness of the APHA Construc-
tion

We complete the proof of Theorem 3.1 by show-
ing that the above construction is indeed an APHA
system. Efficient verifiability, as well as completeness
via a relatively-efficient prover, follow easily from the
construction.

The remaining property, list-extraction, is fulfilled
by the following list extractor LE:

Algorithm 5 (LE). Given vk and a prover-oracle
interaction transcript 〈P̃ (vk), O〉, LE(〈P̃ (vk), O〉) does
the following:
1. extlist← newLIST()
2. In the transcript 〈P̃ (vk), O〉, let (q1, a1), . . . , (ql, al)

320

PROOF-CARRYING DATA AND HEARSAY ARGUMENTS FROM SIGNATURE CARDS

be the query-answer pairs in which the query is of
the form qi = ((“proof”, π′i), 0).

3. for i ∈ [l] do:
(a) Parse π′i as (σi, tri) and ai as (ε, σ′i).
(b) Find some (q, a) in 〈P̃ (vk), O〉 such that
a = (ε, σi) and q is of the form q =
((“inst-wit”, y, w), 0). If none exists, output
⊥ and abort.

(c) Add (y, (π′i, σ′i), w) to extlist.
4. Output extlist.

Claim 3.3. LE fulfills the list-extraction property of
(GAPHA, PAPHA, VAPHA).

The following is an overview of the proof structure;
see [21] for details.

Proof sketch. To prove the success of LE, we define
a sequence of intermediate constructions of increas-
ing power, starting from universal-argument systems
(with a weak proof of knowledge property) and ending
at APHA systems (with full-fledged list extraction).
Each construction is built via black-box access to the
functionality proved for the preceding one.
First construction: adaptivity. Starting from a
universal-argument system (PUA, VUA), which has a
weak proof-of-knowledge (PoK) property, we show
how to construct a pair of machines (P1, V1) for which
the weak PoK property holds even when the prover
itself adaptively chooses the claimed instance y. The
prover has oracle access to a functionality O1 that
outputs random strings upon request; the prover in-
teracts with O1, and then outputs an instance y and
a proof string π1 for the claim “y ∈ SU”. When veri-
fying the output of the prover, we allow V1 to see all
the query-answer pairs of the prover to O1.
V1 works by requiring a (possibly cheating) prover
P̃1 to produce a transcript of the universal-argument
protocol which VUA would have accepted, and, more-
over, by verifying that the public-coin challenges in
the transcript were obtained by P̃1, in the right or-
der, as answers from O1.

We show that whenever a prover P̃1 convinces V1
on some instance y of its choice, P̃1 can be converted
into a cheating P̃UA that convinces VUA on y, from
which a witness for “y ∈ SU” can be extracted using
the universal-argument knowledge extractor EUA. We
thus obtain a knowledge extractor E1.
Second step: stateless oracle. Starting from the
pair of machines (P1, V1), we show how to construct
a triple of machines (G2, P2, V2) for which the weak
PoK property still holds. This time, the prover has
oracle access to a stateless probabilistic oracle O2 gen-
erated by G2, instead of the aforementioned stateful

oracle O1. On input x, O2 outputs a random string
r together with a signature on (x, r). When verifying
the output of the prover, this time V2 does not see
the query-answer pairs of the prover to O2. Instead,
it verifies the signatures in the transcript provided
by the prover, to be convinced that the queries were
made to O2.

That is, V2 requires a (possibly cheating) prover
P̃2 to produce a proof string that V1 would have ac-
cepted, along with corresponding signatures that are
valid under the verification key of O2.

As before (but by a different technique), we show
that whenever a prover P̃2 convinces V2 on some in-
stance y of its choice, P̃2 can be converted into a
prover P̃1 that convinces V1 on y, from which a witness
for “y ∈ SU” can be extracted using the knowledge
extractor E1. We thus obtain a knowledge extractor
E2.
Third step: list extraction. Starting from
(G2, P2, V2), we show how to construct a triple of
machines (GAPHA, PAPHA, VAPHA) that is an APHA
system. Similarly to the previous step, provers for
VAPHA have access to a stateless signed-input-and-
randomness oracle O (following Definition 2), gener-
ated by GAPHA; however, (GAPHA, PAPHA, VAPHA) sat-
isfies a PoK property in a much stronger sense, spec-
ified by the APHA list-extraction property and its
list-extractor LE. This “knowledge boosting” relies
on forcing the prover to explicitly state its witness in
some query to O.
VAPHA works by requiring the (possibly cheating)

prover P̃ to produce a proof string that V2 would
have accepted; however, the proof string should not
be about the claim “y ∈ SU” (for some instance y
chosen by the prover), but about some related claim
“yaug ∈ SU”, where yaug is derived from y. Essentially,
the prover can convince V2 that “yaug ∈ SU” only if it
knows a signature, that verifies under the verification
key of O, for a valid witness that “y ∈ SU”. Thus, the
prover is forced to explicitly query O on such a wit-
ness — and this query can be found by the knowledge
extractor.

Crucially, the knowledge extractor E2 is not in-
voked by the APHA list extractor LE; rather, E2 is
used just in the proof of correctness of LE, in a reduc-
tion from failure of LE to forgeability of signatures.9
Since signatures are forgeable with negligible proba-
bility, the polynomial loss of the weak PoK amounts
to just a small increase in the security parameter.

Thus, we show that whenever VAPHA accepts the
output of P̃ we can (with all but for negligible proba-

9This is similar in spirit to the extractor abort lemma of
Chandran et al. [17].

321

A. CHIESA AND E. TROMER

bility) efficiently find a valid witness for the instance
output by P̃ among the queries of P̃ to O, which is
the main ingredient of the proof of correctness of the
list extractor LE.

3.6 Realizability of an Assisted Prover
Our construction attain APHA systems (and

eventually PCD systems) assuming black-box ac-
cess to single, fixed functionality: signed-input-and-
randomness. This functionality is stateless, and is
parametrized by a single concise secret (the signing
key sk).
Communication. The communication between the
prover and the oracle O is as low as one could hope
for given our approach to knowledge extraction (see
Section 3.2): linear in the witness size |w|, and poly-
nomial in the instance |y| and security parameter κ.
Moreover, only four queries are needed. Note that the
total communication is linear in the length of the orig-
inal witness w for the statement y = (M,x, t) ∈ SU ,
rather than (as in non-interactive CS proofs) a much
longer PCP witness which contains the whole t-step
execution of M(x,w).
Computation. Using the hash-then-sign approach,
and typical hash function constructions, the computa-
tional complexity of the signed-input-and-randomness
functionality is essentially linear in its communication
complexity size and polynomial in the security param-
eter.
Realization. How would such an oracle be pro-
vided in reality? As noted earlier, similar requisites
arose in related works [39][42][54][17][25][50]. One
well-studied option is to use a secure hardware token
that is tamper-proof and leak-proof. Indeed, simi-
lar signing tokens are already prescribed by German
law [28]. Similarly, the functionality can be embed-
ded in cryptographic coprocessors, TPM chips, and
general-purpose smartcard such as TEMs [24]. Alter-
natively, one may hope that this specific functionality
can be obfuscated, either in the strict virtual-box-box
sense [7] or (for real-world security applications) in
some heuristic sense. Lastly, the functionality can be
realized via standard MPC techniques between multi-
ple parties, tokens, or services, if the requisite fraction
of honest participants is available.
Removing randomness. The randomness of the
signed-input-and-randomness functionality is not es-
sential: one could replace the fresh random bits with
pseudorandom bits obtained by a pseudorandom func-
tion, applied to the input, whose seed is kept secret.
In this way, one only has to trust the token to hide
its secret bits (the signing key and the seed) and to
operate correctly, but not to also generate random

bits. Indeed, our constructions do not require the
randomness from the token to be fresh for repeated
queries with the same input, and security holds even
if the randomness comes from a pseudorandom func-
tion. Intuitively, this holds since even with a random-
ized oracle, adversaries can replay old answers.

4 Proof-Carrying Data Systems
We define and construct proof-carrying data (PCD)

systems, which realize the framework of proof-
carrying data. The following subsections are orga-
nized as follows: in Section 4.1, we define the notion
of compliance for distributed computation; in Sec-
tion 4.2, we define PCD systems and discuss their
properties; in Section 4.3, we construct a PCD sys-
tem, and, in Section 4.4, we sketch its correctness.

4.1 Compliance of Computation
We begin by specifying our notion of distributed

computation.

Definition 3 (Distributed computation transcript).
A distributed computation transcript (abbreviated
transcript) is a triple DC = (G, code, data) represent-
ing a directed acyclic multi-graph G = (V,E) with
labels code on the vertices and labels data on the
edges. Vertices represent the computation of pro-
grams, and edges represent messages sent between
these programs. Each non-source vertex v is with la-
beled its program code, denoted code(v). Each edge
(u, v) is labeled by data(u, v), which is the data that
is (allegedly) output by the program of u and is given
as input to the program of v. Each source vertex
has a single outgoing edge, carrying an input of the
distributed computation; there are no programs at
sources, so we set their label to ⊥. The final output of
the distributed computation is the data carried along
edges going into sinks.

An augmented distributed computation transcript
(abbreviated augmented transcript) is a quadruple
ADC = (G, code, data, proof) such that (G, code, data)
is a transcript, and proof is an additional labeling on
the edges of G, specifying proof strings carried along
those edges. (See Figure 5.)

Given a transcript DC = (G, code, data), at times
we need to consider the part of the distributed com-
putation up to a certain point. For an edge (u, v) ∈ E,
we define the transcript of DC up to (u, v), denoted
DC|(u,v) = (G′, code′, data′), to be the labeled sub-
graph induced by the subset of vertices consisting of
v, u and all ancestors of u.

A transcript captures the propagation of informa-
tion via messages in the distributed computation, and

322

PROOF-CARRYING DATA AND HEARSAY ARGUMENTS FROM SIGNATURE CARDS

prg
a

prg
e

prg
b

prg
f

prg
c

prg
d

prg
g

za
, πa

zb, πb

zc, πc

zd, πd

ze, πe
zf , πf

z
a ′, π

a ′

z
b ′, π

b ′

ze′ , πe′

zd′ , πd′
zin, πin

zout, πout

⊥

input

output

Figure 5: Example of an augmented distributed computation transcript. Programs are denoted by prg’s, data by
z’s, and proof strings by π’s. The corresponding (non-augmented) distributed computation transcript is with the
proof strings omitted.

thus the graph is acyclic by definition. A party per-
forming several steps of computations on different in-
puts at different times is represented by distinct cor-
responding vertices.

Next, we define what we mean for a distributed
computation to be compliant, which is our notion
of “correctness with respect to some specification”.
We capture compliance via an efficiently computable
predicate C that is required to hold true at each ver-
tex, when given the program of the vertex together
with its inputs and (alleged) outputs.

Definition 4 (C-compliance). A compliance pred-
icate C is a polynomial-time computable pred-
icate on strings. A distributed computation
transcript DC = (G, code, data) is C-compliant
if for every vertex v ∈ V it holds that
C
(
data(in(v)), code(v), data(out(v))

)
= 1 (where

data(in(v)) denotes the list of data labels on v’s par-
ents, and analogously for data(out(v))).

Alternatives. One may consider stronger forms of
compliance. For example, the compliance predicate
could get as extra inputs the graph G and the iden-
tity of the vertex v (so that the compliance pred-
icate “knows” which vertex in the graph it is ex-
amining). Stronger still, the compliance predicate
could be global, and get as input the whole transcript
DC = (G, code, data). However, our goal is to real-
ize PCD in a dynamic setting, where future compu-
tations have not happened yet (and might even be
unknown) and past computations have been long for-
gotten, so that compliance must indeed be decided
locally. Therefore, we choose a local compliance pred-
icate, which only gets as input the information that is
locally available at a vertex, i.e., the program of the
vertex together with its inputs and (alleged) outputs.

4.2 Definition of PCD Systems
We proceed to define proof-carrying data systems,

starting with their structure and an informal descrip-
tion of their properties.

4.2.1 Structure of PCD systems
A PCD system consists of a triple of machines,

(GPCD, PPCD, VPCD), that works as follows:
• The PCD oracle generator GPCD: for a security

parameter κ, GPCD(1κ) outputs the description of
a probabilistic10 stateless oracle O, together with
O’s verification key vk.
• The PCD prover PPCD: Let vk be a verifica-

tion key, let C be a compliance predicate, and
let prg be a program with (alleged) output zout
and two inputs zin1 and zin2 with correspond-
ing proof strings πin1 and πin2 (see Figure 6).
Then POPCD(vk,C, zout, prg, zin1 , πin1 , zin2 , πin2) out-
puts a proof string πout for the claim that zout is an
output consistent with a C-compliant transcript.11

• The PCD verifier VPCD: for a verification key vk,
a compliance predicate C, an output zout, and a
proof string πout, VPCD(vk,C, zout, πout) accepts if
πout convinces him that zout is an output consistent
with a C-compliant transcript.

Using these algorithms, a distributed computation
transcript is dynamically compiled into an augmented
distributed computation transcript by adding a proof
string to each edge (see Figure 5). The process of gen-
erating proof strings is defined inductively, by having
each (internal) vertex v in DC use PPCD to produce
a new proof string πout for its output zout (given its
inputs, their inductively generated proof strings, its
program, and output).

10The oracle can be derandomized; see Section 3.6.
11Without loss of generality, we restrict our attention to tran-

scripts for which programs have exactly two inputs and one
output.

323

A. CHIESA AND E. TROMER

prg

vk
zin1

zin2

πin2

πin1

πout

zout

verification

key

compliance

predicate

C

Figure 6: Computation of the new proof string
πout for the output data zout using the PCD prover
POPCD(vk,C, zout, prg, zin1 , πin1 , zin2 , πin2).

More precisely, focusing on a particular edge
(u, v) ∈ E, we recursively define the process of com-
puting proof strings in DC up to (u, v); this process
generates an augmented transcript of DC up to (u, v).
Let DC′ = DC|(u,v) be the transcript of DC up to
(u, v), and proof′ : E′ → {0, 1}∗ another label on the
edges of DC′ that carries proof strings (in addition to
the label data′ that carries the data). Initially, proof
strings on the outgoing edges of sources are set to ⊥.
Then, taking each non-source non-sink vertex w ∈ V ′
in some topological order,12 let win1 ,win2 be the two
parents of w, and let wout be its the single child in DC′.
Let zin1 = data(win1 , w), πin1 = proof′(win1 , w), zin2 =
data(win2 , w), πin2 = proof′(win2 , w), prg = code(w),
and zout = data(w,wout). Then, recursively compute

πout ← POPCD(vk,C, zout, prg, zin1 , πin1 , zin2 , πin2),

and define πout ≡ proof′(w,wout). The final output z
of DC′ = DC|(u,v) has the proof string z = proof(u, v).

4.2.2 Properties of PCD (intuitive)
The triple (GPCD, PPCD, VPCD) must satisfy three

properties. Analogously to APHA systems, the first
two bound the complexity of proving and verifying,
and the third is a strong proof-of-knowledge prop-
erty (which, in particular, implies soundness). These
are adapted to the context of distributed computation
transcripts.

First, proof strings generated by the prover should
be efficiently verifiable by the verifier: VPCD halts in
time that is polynomial in the security parameter κ,
the size of the description of C, the length of z, and
the logarithm of the time it took to generate π. (Our

12Formally, since G is acyclic, we are oblivious to the choice
of temporal order. In reality the proof strings are computed
on-the-fly according to the temporal order by which the data
messages are generated; by causality, this order is topological.

parameters are even better; see the analysis in Sec-
tion 4.2.3.)

Second, the prover should be able to prove true
statements using a reasonable amount of time. When-
ever it is indeed the case that a transcript DC is C-
compliant, if the above recursive process is used to
generate a proof string π for the data z on some edge,
then (z, π) are indeed accepted by VPCD. Moreover,
the above recursive process runs in time that is poly-
nomial in the security parameter κ, the size of the
description of C and the time it took to to verify C-
compliance at every node.

Third, soundness means that given a compliance
predicate C and an output string z that is not con-
sistent with any C-compliant transcript, no cheating
prover circuit P̃ of size poly(κ) can generate a convinc-
ing proof string π for z (except with non-negligible
probability, over the randomness of the oracle and its
verification key).

In order to preserve security for distributed com-
putation that uses cryptographic functionality that
is only computationally secure, we actually require a
stronger property: proof of knowledge. A proof string
π augmenting a piece of data z attests to the follow-
ing. For any (possibly cheating) prover circuit P̃ of
size poly(κ), there exists a knowledge extractor EPCD
circuit such that, for any output string z, if P̃ pro-
duces a sufficiently convincing proof string π for z,
then EPCD can extract from P̃ a C-compliant tran-
script DC that has final output z. Also, |EPCD| is
polynomial in |P̃ | and the security parameter κ.13

4.2.3 Properties of PCD (formal)
We proceed to capture the above intuition more

formally. First, because provers and verifiers are con-
catenated in a recursive structure, in order to pre-
cisely quantify their complexity we need to define a
recursive function over the transcript DC.

The recursive function that characterizes the com-
plexity is as follows:

Definition 5 (Recursive Time up to an Edge). Let
p be a positive polynomial, κ a security parameter, C
a compliance predicate, and DC a transcript. Given
(u, v) ∈ E, we define the recursive time of DC|(u,v),
denoted Tp(κ,C,DC|(u,v)), where Tp is recursively de-
fined as follows:
• If u is a source vertex,

Tp
(
κ,C,DC|(u,v)

) ≡ p(κ+ |〈C〉|) .
13Our construction attains a stronger definition, where a fixed

knowledge extractor can extract from any convincing prover by
observing only its output and its interaction with the oracle
(analogously to the APHA list extraction property). We use
the above weaker definition for convenience of presentation.

324

PROOF-CARRYING DATA AND HEARSAY ARGUMENTS FROM SIGNATURE CARDS

• Otherwise,

Tp
(
κ,C,DC|(u,v)

) ≡
timeC

(
data(in(u)), code(u), data(out(u))

)
+

∑
u′∈parents(u)

p
(
κ+ |〈C〉|+ |data(u′, u)|+

log
(
Tp
(
κ,C, data(u′, u),DC|(u′,u)

)))
.

The essential property of this recursive function is
that the cost of past computation decays as an iter-
ated logarithm at every aggregation step, and thus
converges very quickly. Hence, the time it takes to
generate a proof πout is essentially polynomial in the
time it takes to merely locally check compliance, i.e.,
to compute C((zin1 , zin2), prg, (zout)); and verification
time is logarithmic in that.

We can now state the definition of PCD systems.

Definition 6 (PCD System). A proof-carrying data
system with security parameter κ is a triple of
polynomial-time machines (GPCD, PPCD, VPCD), where
GPCD is probabilistic, PPCD is deterministic with ora-
cle access, and VPCD is deterministic, that satisfies the
following conditions:
• Efficient verification: There exists a positive poly-

nomial p such that for every κ ∈ ℕ, (O, vk) ∈
GPCD(1κ), compliance predicate C, transcript DC,
edge (u, v) ∈ E with label z = data(u, v), and proof
string π,

timeVPCD (vk,C, z, π) ≤
p
(
κ+ |〈C〉|+ |z|+ logTp

(
κ,C,DC|(u,v)

))
.

In particular, the proof string is short: |π| ≤
p
(
κ+ |〈C〉|+ |z|+ logTp

(
κ,C,DC|(u,v)

))
.

• Completeness via a relatively-efficient prover: Let
A be the process of computing proof strings in DC
up to (u, v), described above. For every κ ∈ ℕ, com-
pliance predicate C, C-compliant transcript DC,
and edge (u, v) ∈ E with label z = data(u, v),

Pr
[
VPCD(vk,C, z, π) = 1

∣∣∣
(O, vk)← GPCD(1κ) ;

π ← AO(vk,C,DC|(u,v))
]

= 1

(where the probability is taken over the internal
randomness of GPCD and O).
Furthermore, there exists a positive polynomial p
such that for every κ ∈ ℕ, (O, vk) ∈ GPCD(1κ), C-
compliant computation DC, and edge (v, w) ∈ E

with label z = data(v, w),

timeAO(vk,C,DC|(u,v)) ≤
p
(
κ+ |〈C〉|+ |z|+ Tp

(
κ,C,DC|(u,v)

))
.

• Proof-of-knowledge property: Let κ ∈ ℕ. For every
(possibly cheating) prover circuit P̃ of size poly(κ),
there exists a knowledge extractor circuit EPCD of
size poly(κ) such that, for every polynomial p, com-
pliance predicate C, output string z ∈ {0, 1}∗, and
for sufficiently large κ:
if P̃ convinces VPCD to accept z with non-negligible
probability,

Pr
[
VPCD(vk,C, z, π) = 1

∣∣∣
(O, vk)← GPCD(1κ) ;

π ← P̃O(vk,C, z)
]
>

1
p(κ)

(where the probability is taken over the internal
randomness of GPCD and O), then EPCD extracts
a C-compliant distributed computation transcript
DC consistent with the final output z (i.e., z =
data(u, v) and (u, v) is the unique incoming edge
to the unique sink vertex v) with almost the same
probability:

Pr
[
DC is C-compliant ∧ u, v ∈ V ∧

DC = DC|(u,v) ∧ z = data(u, v)
∣∣∣

(O, vk)← GPCD(1κ) ;

DC← EOPCD(vk,C, z)
]
>

1
p(κ)
− µ(κ)

(where the probability is taken over the internal
randomness of GPCD and O), for some negligible
function µ.

4.3 Construction of a PCD System
We show the following:

Theorem 4.1 (PCD from APHA). PCD systems can
be built from APHA systems (using the same oracle).

Combining this with Corollary 3.2, we deduce the
existence of PCD systems under mild standard as-
sumptions:

Corollary 4.2 (Existence of PCD systems). As-
suming the existence of collision-resistant hashing
schemes, there exist PCD systems whose oracle is
signed-input-and-randomness.

325

A. CHIESA AND E. TROMER

Given any APHA system (GAPHA, PAPHA, VAPHA),
such as those of Section 3, we construct a PCD system
(GPCD, PPCD, VPCD) as follows.

The oracle generator is the same (i.e., GPCD =
GAPHA). The PCD prover and verifier will in-
voke those of APHA on specially crafted statements
“(MPCD, x, t) ∈ SU”, where MPCD is a fixed PCD ma-
chine (depending only on the compliance predicate
C and the verification key vk) which specifies how to
aggregate proof strings, check C locally and generate
the new proof string.

Specifically, MPCD gets as input a string x =
(zout, dout), where zout is the alleged output of the cur-
rent vertex and dout is the number of past aggrega-
tions, and a witness w = (prg, zin1 , πin1 , zin2 , πin2) con-
taining the program prg of the current vertex, together
with its inputs and their corresponding proof strings.
The PCD machine will accept only if
1. it verifies, by invoking VAPHA, that the proof strings

of the inputs are valid, and
2. C((zin1 , zin2), prg, (zout)) = 1, i.e.,

C-compliance holds.
For the “base case” dout = 1, MPCD does not have
previous proof strings to verify, so it will only check
that C-compliance holds. Formally, the PCD machine
is defined as follows:
Algorithm 6 (PCD Machine). Fix κ ∈ ℕ and let
(O, vk) ∈ GPCD(1κ). Let C be a compliance predicate
C, zout the (alleged) output of a program prg with in-
puts zin1 and zin2 , and πin1 and πin2 proof strings. De-
fine x ≡ (zout, dout) and w ≡ (prg, zin1 , πin1 , zin2 , πin2).
The PCD machine with respect to C and vk, denoted
M vk,C

PCD , is defined as follows: M vk,C
PCD , on input (x,w),

does the following:
1. Base case. If πin1 =⊥, verify that dout = 1 and

C(⊥,⊥, zin1) = 1, otherwise reject.
2. Recursive case. If πin1 �=⊥, parse πin1 as

(π′in1 , din1 , tin1), and do the following:
(a) Verify that dout > din1 > 0.
(b) Define yin1 ≡ (M vk,C

PCD , (zin1 , din1), tin1).
(c) Verify that VAPHA(vk, yin1 , π

′
in1) = 1, otherwise

reject.
3. Repeat steps 1 and 2 for zin2 and πin2 .
4. Accept iff C((zin1 , zin2), prg, (zout)) accepts.

The PCD prover and verifier are then constructed
as follows.
Algorithm 7 (PPCD). Fix κ ∈ ℕ and let
(O, vk) ∈ GPCD(1κ). Let C be a compliance
predicate, zout the (alleged) output of a program
prg with inputs zin1 and zin2 (and corresponding
proof strings πin1 and πin2). The PCD prover
POPCD(vk,C, zout, prg, zin1 , πin1 , zin2 , πin2) does the fol-

lowing:
1. If πin1 =⊥, run C(⊥,⊥, zin1) and let tin1 be the

time C takes to halt. Otherwise, parse πin1 as
(π′in1 , din1 , tin1).

2. If πin2 =⊥, run C(⊥,⊥, zin2) and let tin2 be the
time C takes to halt. Otherwise, parse πin2 as
(π′in2 , din2 , tin2).

3. Run C((zin1 , zin2), u, (zout)) and let tC be the time
C takes to halt.

4. Define t ≡ tC + tin1 + tin2 ,
dout ≡ max{din1 , din2}+ 1,
y ≡ (M vk,C

PCD , (zout, dout), t) and
w ≡ (prg, zin1 , πin1 , zin2 , πin2).

5. Compute π′ ← POAPHA(vk, y, w).
6. Define π ≡ (π′, d, t).
7. Output π.
Algorithm 8 (VPCD). Fix κ ∈ ℕ and let (O, vk) ∈
GPCD(1κ). Let C be a compliance predicate, z an
output string, and π a proof string. The PCD verifier
VPCD(vk,C, z, π) does the following:
1. If π =⊥, output C(⊥,⊥, z).
2. If π = (π′, d, t), define y ≡ (M vk,C

PCD , (z, d), t), and
output VAPHA(vk, y, π′).

4.4 Correctness of the PCD Construction
To complete the proof of Theorem 4.1, there re-

mains to show that the above construction is indeed
a PCD system. Efficient verifiability, as well as com-
pleteness via a relatively-efficient prover, follow easily
from the construction.

In the following, we sketch the proof of the PCD
proof-of-knowledge property. For further details see
the full version of this paper [21].

The PCD knowledge extractor EPCD for a (cheat-
ing) prover P̃ , on input (vk,C, z) and with oracle ac-
cess to O, does the following.
1. Run P̃O(vk,C, z) to get its output (z, π)

and to record its oracle queries and answers,
〈P̃ (vk,C, z), O〉.

2. Apply the APHA list extractor LE to the recorded
interaction

〈
P̃ (vk), O

〉
, to extract a list, extlist, of

triples (yi, πi, wi).
3. Apply an offline reconstruction procedure which

outputs a transcript of the “past” distributed com-
putation by looking only at extlist and (z, π) (see
below).

All our work thus far was aimed at making such of-
fline reconstruction possible. The fact that the tran-
script can be reconstructed from a single invocation
of P̃ is essential: had we used a recursive approach
requiring multiple invocations, we would have experi-

326

PROOF-CARRYING DATA AND HEARSAY ARGUMENTS FROM SIGNATURE CARDS

enced an exponential blowup as aggregated proofs are
recursively extracted.
Offline reconstruction procedure. The procedure
performs a depth-first traversal of the implicit history
represented by extlist, starting from the root implied
by (z, π). It maintains the following data structures:
• An augmented distributed computation transcript

ADC, initially containing just the output edge.
• An exploration stack, denoted expstack, containing

the set of edges of G that we have discovered but
not yet explored.

At a high level, the procedure operates iteratively as
follows. At every iteration, we pop the next edge e
to explore from expstack. Then, we check ADC to
see what is the APHA instance and proof string pair
(ye, πe) on the edge e, and look for a correspond-
ing triple of the form (ye, πe, wi) in the extracted list
extlist. (From the APHA list-extraction property, this
succeeds, and moreover wi is a valid witness with all
but negligible probability.) If we have already seen
the instance-witness pair (ye, wi) on some edge edge
e′, we grow the graph of ADC by making the (hitherto
unknown) source vertex of e the same as the source of
e′. Otherwise, we grow ADC by making the source of
e a new vertex v. If wi is a witness that uses the base
case of the PCD machine, then v is a source vertex
and we are done for his iteration. Otherwise v is a
new internal vertex, and we add the edges leading to
its (yet unknown) parents to expstack. The labels on
ADC are updated accordingly.

5 Applications and Design Patterns
Proof-carrying data is a flexible and powerful

framework that can be applied to security goals in
many problem domains. Below are a some examples
of domains where we envision applicability. We stress
that this is intended as a glimpse of things to come;
full realizations, and evaluation of concrete practical-
ity, exceed the present scope.
Distributed theorem proving. Proof-carrying
data can be interpreted as a new result in the theory
of proofs: “distributed theorem proving” is feasible. It
was previously known, via probabilistically-checkable
proofs [5] and CS proofs [53], that one can be con-
vinced of a theorem much quicker than by inspecting
the theorem’s proof. However, consider a theorem
whose proof is built on various (possibly nested) lem-
mas proved by different people. In order to quickly
convince a verifier of the theorem’s truth, in previous
techniques we would have to obtain and concatenate
the original (long) proofs of all the lemmas, and only
then then use (for example) CS proofs to compress

them. Our results imply that compressed proofs for
the lemmas can be directly used to obtain a com-
pressed proof of the reliant theorem, and moreover
the latter’s length is (essentially) independent of the
length of the lemmas’ proofs.
Multilevel security. As mentioned in Section 1.1,
PCD may be used for information flow control. For
example, consider enforcing multilevel security [2,
Chap. 8.6] in a room full of data-processing machines.
We want to publish outputs labeled “non-secret”, but
are concerned that they may have been tainted by
“secret” information (e.g., due to bugs, via software
side channel attacks [15] or perhaps via literal eaves-
dropping [49][4][67]).

Suppose every “non-secret” input entering the sys-
tem is digitally signed as such, by some classifier,
under a verification key vkns. Suppose moreover
(for simplicity) that the scheduling of which-program-
to-apply-on-what-data is fully specified in advance.
Then we can define the compliance predicate C as
verifying that, in the distributed computation tran-
script, the output of every vertex is either properly
signed under vkns, or is the result of correctly exe-
cuting some program prg on the vertex’s inputs and
this is indeed the prescribed program according to the
schedule. Then, every C-compliant distributed com-
putation transcript consists of applying the scheduled
programs to “non-secret” inputs. Thus, its final out-
put is independent of secret inputs.

The PCD system augments every message in the
system with a proof string that attests this C-
compliance. Eventually a censor at the system
perimeter inspects the final output by verifying its
associated proof, and lets out only properly-verified
messages (as in Figure 2). Because verification is con-
cerned with properties of the output per se, security
is unaffected by anomalies (faults and leakage) in the
preceding computation.
Bug attacks and IT supply chain. Faults can
be devastating to security [12]. However, hardware
and software components are often produced in far-
away lands from parts of uncertain origin. This IT
supply chain issue forms risks to users and organi-
zations [1][11][45][64]. Using PCD, one can achieve
fault isolation and accountability at the level of sys-
tem components, e.g., chips or software modules, by
having each component augment every output with
a proof that its computation, including all history it
relied on, were correct.
Simulations and MMO. Consider a simulation
such as massively multiplayer online (MMO) worlds.
These typically entail certain invariants (“laws of
physics”), together with inputs chosen at human

327

A. CHIESA AND E. TROMER

users’ discretion. A common security goal is to en-
sure that a particular player does not cheat (e.g., by
modifying the game code). Today, this is typically en-
forced by a centralized server, which is unscalable. At-
tempts at secure peer-to-peer architectures have seen
very limited success [61][33]. PCD offers a potential
solution approach when the underlying information
flow has sufficient locality (as is it the case for most
simulations): start with a naive (insecure) peer-to-
peer system, and enforce the invariants by augmenting
every message with a proof of the requisite properties.
Financial systems. As a special case of the above,
one can think of financial systems as a “game” where
parties perform local transactions subject to certain
rules. For example, in any transaction, the total
amount of money held by the parties must not in-
crease unless the government is involved. We con-
jecture that interesting financial settings can be thus
captured and allowed to proceed in a secure dis-
tributed fashion. Potentially, this may capture finan-
cial processes that are much richer than the consumer-
vendor relations of traditional e-cash.
Distributed dynamic program analysis. Con-
sider, for example, taint propagation — a popular dy-
namic program analysis technique which tracks prop-
agation of information inside programs. Current sys-
tems (e.g., [59]) cannot securely span mutually un-
trusting platforms. Since tainting rules are easily ex-
pressed by a compliance predicate that observes the
computation of the program, PCD can maintain taint-
ing across a distributed computation.
Distributed type safety. Language-based type-
safety mechanisms have tremendous expressive power,
but are targeted at the case where the underlying
execution platform can be trusted to enforce type
rules. Thus, they typically cannot be applied across
distributed systems consisting of multiple mutually-
untrusting execution platforms. This barrier can be
surmounted by using PCD to augment typed values
passing between systems with proofs for the correct-
ness of the type.
Generalizing: design patterns. The PCD ap-
proach allows a system designer to “program in” the
security requirement into a compliance predicate, and
have it “magically” enforced by the PCD system. As
gleaned from the above examples, this programming
can be nontrivial and requires various tricks. This is
somewhat similar to the world of software engineer-
ing, and indeed we can borrow some meta-techniques
from that world. In particular, design patterns [32]
are a very useful method for capturing common prob-
lems and solution techniques in a loosely-structured
way. A number of such design patterns are already

evident in the above examples (e.g., using signatures
to designate parties or properties). We envision, and
are exploring, a library of such patterns to aid system
designers.

6 Conclusions and Open Problems
We envision proof-carrying data as a framework

for achieving security properties in a nonconventional
way, which circumvents many difficulties with current
approaches. In PCD, faults and leakage are acknowl-
edged as an expected occurrence, and rendered in-
consequential by reasoning about properties of data
which are independent of the preceding computation.
The system designer prescribes the desired properties
of the computation’s output; proofs of these proper-
ties are attached to the data flowing through the sys-
tem, and are mutually verified by the system’s com-
ponents.

This work shows explicit constructions of proof-
carrying data, under standard assumptions, in the
model where parties have black-box access to some
functionality (e.g., a simple hardware token). The
problem of weakening this requirement, or formally
proving that it is (in some sense) necessary, remains
open. A PCD system with the additional property
of zero-knowledge [38][34, Chap. 4] would be useful
in many applications. Of particular interest is sur-
mounting the current inefficiency of the underlying
argument systems and obtaining a fully practical re-
alization.

In this work we briefly touched upon potential ap-
plications; this leaves many opportunities for fleshing
out the details, devising design patterns and imple-
menting real systems.

Acknowledgments
We are indebted to Ron Rivest for his insight and

support during this investigation. Scott Aaronson,
Andrew Drucker and Paul Valiant provided valuable
pointers about the PCP vs. oracle difficulty. Boaz
Barak, Arnab Bhattacharyya and Or Meir helped in
the evaluation of argument systems and the underly-
ing PCPs. Stephen Chong, Greg Morrisett and Jeff
Vaughan shared their perspective on applications of
PCD in type safety. We thank Shafi Goldwasser,
Frans Kaashoek, Nancy Lynch, Silvio Micali, Nickolai
Zeldovich and the anonymous reviewers for valuable
feedback.

This work was supported by NSF grant NSF-CNS-
0808907 and AFRL grant FA8750-08-1-0088. Views
and conclusions contained here are those of the au-
thors and should not be interpreted as necessarily rep-

328

PROOF-CARRYING DATA AND HEARSAY ARGUMENTS FROM SIGNATURE CARDS

resenting the official policies or endorsements, either
express or implied, of AFRL, NSF, the U.S. Govern-
ment or any of its agencies.

References
[1] D. Agrawal, S. Baktir, D. Karakoyunlu, P. Rohatgi,

and B. Sunar. Trojan detection using IC fingerprint-
ing. In SP ’07: Proceedings of the 2007 IEEE Sympo-
sium on Security and Privacy, pages 296–310, Wash-
ington, DC, USA, 2007. IEEE Computer Society.

[2] R. J. Anderson. Security Engineering: A Guide
to Building Dependable Distributed Systems. Wiley
Publishing, 2nd edition, 2008.

[3] G. R. Andrews and R. P. Reitman. An axiomatic
approach to information flow in programs. ACM
Transactions on Programming Languages and Sys-
tems, 2(1):56–76, 1980.

[4] D. Asonov and R. Agrawal. Keyboard acoustic ema-
nations. In SP ’04: Proceedings of the 2004 IEEE
Symposium on Security and Privacy, pages 3–11,
Washington, DC, USA, 2004. IEEE Computer So-
ciety.

[5] L. Babai, L. Fortnow, L. A. Levin, and M. Szegedy.
Checking computations in polylogarithmic time. In
STOC ’91: Proceedings of the 23rd Annual ACM
Symposium on Theory of Computing, pages 21–32,
New York, NY, USA, 1991. ACM.

[6] B. Barak and O. Goldreich. Universal arguments
and their applications. In CCC ’02: Proceedings of
the 17th IEEE Annual Conference on Computational
Complexity, pages 194–203, Washington, DC, USA,
2002. IEEE Computer Society.

[7] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich,
A. Sahai, S. P. Vadhan, and K. Yang. On the
(im)possibility of obfuscating programs. In CRYPTO
’01: Proceedings of the 21st Annual International
Cryptology Conference on Advances in Cryptology,
pages 1–18, London, UK, 2001. Springer-Verlag.

[8] M. Belenkiy, J. Camenisch, M. Chase, M. Kohlweiss,
A. Lysyanskaya, and H. Shacham. Randomizable
proofs and delegatable anonymous credentials. In
CRYPTO ’09: Proceedings of the 29th Annual In-
ternational Cryptology Conference on Advances in
Cryptology, pages 108–125, Berlin, Heidelberg, 2009.
Springer-Verlag.

[9] M. Ben-Or, S. Goldwasser, and A. Wigderson.
Completeness theorems for non-cryptographic fault-
tolerant distributed computation. In STOC ’88: Pro-
ceedings of the 20th Annual ACM Symposium on The-
ory of Computing, pages 1–10, New York, NY, USA,
1988. ACM.

[10] A. Bhattacharyya. Implementing probabilistically
checkable proofs of proximity. Technical Report MIT-
CSAIL-TR-2005-051, MIT, 2005. Available at http:
//dspace.mit.edu/handle/1721.1/30562.

[11] E. Biham, Y. Carmeli, and A. Shamir. Bug attacks.
In CRYPTO ’08: Proceedings of the 28th Annual

International Cryptology Conference on Advances in
Cryptology, pages 221–240, Berlin, Heidelberg, 2008.
Springer-Verlag.

[12] E. Biham and A. Shamir. Differential fault analysis
of secret key cryptosystems. In CRYPTO ’97: Pro-
ceedings of the 17th Annual International Cryptology
Conference on Advances in Cryptology, pages 513–
525, London, UK, 1997. Springer-Verlag.

[13] D. Boneh, E. Shen, and B. Waters. Strongly un-
forgeable signatures based on computational diffie-
hellman. In PKC ’06: Proceedings of the 9th Inter-
national Workshop on Practice and Theory in Public
Key Cryptography, pages 229–240, London, UK, 2006.
Springer-Verlag.

[14] G. Brassard, D. Chaum, and C. Crépeau. Minimum
disclosure proofs of knowledge. Journal of Computer
and System Sciences, 37(2):156–189, 1988.

[15] D. Brumley and D. Boneh. Remote timing attacks
are practical. Computer Networks: The International
Journal of Computer and Telecommunications Net-
working, 48(5):701–716, 2005.

[16] R. Canetti and M. Fischlin. Universally composable
commitments. In CRYPTO ’01: Proceedings of the
21st Annual International Cryptology Conference on
Advances in Cryptology, pages 19–40, London, UK,
2001. Springer-Verlag.

[17] N. Chandran, V. Goyal, and A. Sahai. New con-
structions for UC secure computation using tamper-
proof hardware. In EUROCRYPT ’08: Proceedings
of the 27th Annual International Conference on Ad-
vances in Cryptology, pages 545–562, Berlin, Heidel-
berg, 2008. Springer-Verlag.

[18] R. Chang, S. Chari, D. Ranjan, and P. Rohatgi. Rel-
ativization: a revisionistic retrospective. Bulletin of
the European Association for Theoretical Computer
Science, 47:144–153, 1992.

[19] M. Chase and A. Lysyanskaya. On signatures of
knowledge. In CRYPTO ’06: Proceedings of the
26th Annual International Cryptology Conference on
Advances in Cryptology, pages 78–96, London, UK,
2006. Springer-Verlag. Full version available at http:
//eprint.iacr.org/2006/184.

[20] D. Chaum, C. Crépeau, and I. Damgård. Multiparty
unconditionally secure protocols. In STOC ’88: Pro-
ceedings of the 20th Annual ACM Symposium on The-
ory of Computing, pages 11–19, New York, NY, USA,
1988. ACM.

[21] A. Chiesa and E. Tromer. Proof-carrying data, 2009.
Web site at http://projects.csail.mit.edu/pcd.

[22] B.-G. Chun, P. Maniatis, S. Shenker, and J. Kubia-
towicz. Attested append-only memory: making ad-
versaries stick to their word. ACM SIGOPS Operat-
ing Systems Review, 41(6):189–204, 2007.

[23] C. Colby, P. Lee, and G. C. Necula. A proof-carrying
code architecture for java. In CAV ’00: Proceed-
ings of the 12th International Conference on Com-
puter Aided Verification, pages 557–560, London,
UK, 2000. Springer-Verlag.

329

A. CHIESA AND E. TROMER

[24] V. Costan, L. F. Sarmenta, M. Dijk, and S. De-
vadas. The trusted execution module: Commodity
general-purpose trusted computing. In CARDIS ’08:
Proceedings of the 8th IFIP WG 8.8/11.2 Interna-
tional Conference on Smart Card Research and Ad-
vanced Applications, pages 133–148, Berlin, Heidel-
berg, 2008. Springer-Verlag.

[25] I. Damgård, J. B. Nielsen, and D. Wichs. Univer-
sally composable multiparty computation with par-
tially isolated parties. In TCC ’09: Proceedings of
the 6th Theory of Cryptography Conference on The-
ory of Cryptography, pages 315–331, Berlin, Heidel-
berg, 2009. Springer-Verlag.

[26] D. E. Denning. A lattice model of secure information
flow. Communications of the ACM, 19(5):236–243,
1976.

[27] D. E. Denning and P. J. Denning. Certification of
programs for secure information flow. Communica-
tions of the ACM, 20(7):504–513, 1977.

[28] B. der Justiz. Gesetz über Rahmenbedingungen für
elektronische Signaturen. Bundesgesetzblatt I 2001,
876, May 2001. online at http://bundesrecht.juris.
de/bundesrecht/sigg_2001/inhalt.html.

[29] A. Fiat and A. Shamir. How to prove yourself: prac-
tical solutions to identification and signature prob-
lems. In CRYPTO ’86: Proceedings of the 6th
Annual International Cryptology Conference on Ad-
vances in Cryptology, pages 186–194, London, UK,
1987. Springer-Verlag.

[30] M. Fischlin. Communication-efficient non-interactive
proofs of knowledge with online extractors. In
CRYPTO ’05: Proceedings of the 25th Annual Inter-
national Cryptology Conference on Advances in Cryp-
tology, pages 152–168, London, UK, 2005. Springer-
Verlag.

[31] L. Fortnow. The role of relativization in complex-
ity theory. Bulletin of the European Association for
Theoretical Computer Science, 52:229–244, 1994.

[32] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design patterns: elements of reusable object-oriented
software. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 1995.

[33] C. GauthierDickey, D. Zappala, V. Lo, and J. Marr.
Low latency and cheat-proof event ordering for peer-
to-peer games. In NOSSDAV ’04: Proceedings of the
14th International Workshop on Network and Oper-
ating Systems Support for Digital Audio and Video,
pages 134–139, New York, NY, USA, 2004. ACM.

[34] O. Goldreich. Foundations of Cryptography: Volume
1, Basic Tools. Cambridge University Press, New
York, NY, USA, 2000.

[35] O. Goldreich. Foundations of Cryptography: Volume
2, Basic Applications. Cambridge University Press,
New York, NY, USA, 2004.

[36] O. Goldreich, S. Micali, and A. Wigderson. How to
play any mental game. In STOC ’87: Proceedings of
the 19th Annual ACM Symposium on Theory of Com-
puting, pages 218–229, New York, NY, USA, 1987.

ACM.
[37] S. Goldwasser, Y. T. Kalai, and G. N. Rothblum. Del-

egating computation: interactive proofs for muggles.
In STOC ’08: Proceedings of the 40th Annual ACM
Symposium on Theory of Computing, pages 113–122,
New York, NY, USA, 2008. ACM.

[38] S. Goldwasser, S. Micali, and C. Rackoff. The knowl-
edge complexity of interactive proof systems. SIAM
Journal on Computing, 18(1):186–208, 1989.

[39] D. Hofheinz, J. Müller-Quade, and D. Unruh. Uni-
versally composable zero-knowledge arguments and
commitments from signature cards. In MoraviaCrypt
’05: Proceedings of the 5th Central European Confer-
ence on Cryptography, pages 93–103, 2005.

[40] Q. Huang, D. S. Wong, and Y. Zhao. Generic trans-
formation to strongly unforgeable signatures. In
ACNS ’07: Proceedings of the 5th International Con-
ference on Applied Cryptography and Network Secu-
rity, pages 1–17, Berlin, Heidelberg, 2007. Springer-
Verlag.

[41] Y. Ishai, E. Kushilevitz, and R. Ostrovsky. Efficient
arguments without short PCPs. In CCC ’07: Pro-
ceedings of the Twenty-Second Annual IEEE Confer-
ence on Computational Complexity, pages 278–291,
Washington, DC, USA, 2007. IEEE Computer Soci-
ety.

[42] J. Katz. Universally composable multi-party com-
putation using tamper-proof hardware. In EURO-
CRYPT ’07: Proceedings of the 26th Annual Interna-
tional Conference on Advances in Cryptology, pages
115–128, Berlin, Heidelberg, 2007. Springer-Verlag.

[43] J. Kilian. Zero-knowledge with log-space verifiers.
In SFCS ’88: Proceedings of the 29th Annual Sym-
posium on Foundations of Computer Science, pages
25–35, Washington, DC, USA, 1988. IEEE Computer
Society.

[44] J. Kilian. A note on efficient zero-knowledge proofs
and arguments (extended abstract). In STOC ’92:
Proceedings of the 24th Annual ACM Symposium on
Theory of Computing, pages 723–732, New York, NY,
USA, 1992. ACM.

[45] S. T. King, J. Tucek, A. Cozzie, C. Grier, W. Jiang,
and Y. Zhou. Designing and implementing mali-
cious hardware. In LEET’08: Proceedings of the
1st USENIX Workshop on Large-Scale Exploits and
Emergent Threats, pages 1–8, Berkeley, CA, USA,
2008. USENIX Association.

[46] V. Kiriansky, D. Bruening, and S. P. Amarasinghe.
Secure execution via program shepherding. In Pro-
ceedings of the 11th USENIX Security Symposium,
pages 191–206, Berkeley, CA, USA, 2002. USENIX
Association.

[47] M. Krohn, A. Yip, M. Brodsky, N. Cliffer, M. F.
Kaashoek, E. Kohler, and R. Morris. Information
flow control for standard os abstractions. In SOSP
’07: Proceedings of the 21st ACM SIGOPS Sympo-
sium on Operating Systems Principles, pages 321–
334, New York, NY, USA, 2007. ACM.

330

PROOF-CARRYING DATA AND HEARSAY ARGUMENTS FROM SIGNATURE CARDS

[48] B. W. Lampson. A note on the confinement problem.
Communications of the ACM, 16(10):613–615, 1973.

[49] M. LeMay and J. Tan. Acoustic surveillance of phys-
ically unmodified pcs. In SAM ’06: Proceedings of
the 2006 International Conference on Security and
Management, pages 328–334. CSREA Press, 2006.

[50] D. Levin, J. R. Douceur, J. R. Lorch, and T. Mosci-
broda. TrInc: small trusted hardware for large dis-
tributed systems. In NSDI’09: Proceedings of the
6th USENIX Symposium on Networked Systems De-
sign and Implementation, pages 1–14, Berkeley, CA,
USA, 2009. USENIX Association.

[51] J. Liu, M. D. George, K. Vikram, X. Qi, L. Waye, and
A. C. Myers. Fabric: a platform for secure distributed
computation and storage. In SOSP ’09: Proceedings
of the 22nd ACM SIGOPS Symposium on Operating
Systems Principles, pages 321–334, New York, NY,
USA, 2009. ACM.

[52] N. A. Lynch. Distributed Algorithms. Morgan Kauf-
mann Publishers, San Mateo, CA, 1996.

[53] S. Micali. Computationally sound proofs. SIAM
Journal on Computing, 30(4):1253–1298, 2000.

[54] T. Moran and G. Segev. David and goliath commit-
ments: Uc computation for asymmetric parties using
tamper-proof hardware. In EUROCRYPT ’08: Pro-
ceedings of the 27th Annual International Conference
on Advances in Cryptology, pages 527–544, Berlin,
Heidelberg, 2008. Springer-Verlag.

[55] A. C. Myers and B. Liskov. A decentralized model for
information flow control. In SOSP ’97: Proceedings
of the 16th ACM SIGOPS Symposium on Operating
Systems Principles, pages 129–142, New York, NY,
USA, 1997. ACM.

[56] G. C. Necula. Proof-carrying code. In POPL
’97: Proceedings of the 24th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming
Languages, pages 106–119, New York, NY, USA,
1997. ACM.

[57] G. C. Necula and P. Lee. Safe kernel extensions with-
out run-time checking. ACM SIGOPS Operating Sys-
tems Review, 30(SI):229–243, 1996.

[58] G. C. Necula and P. Lee. Safe, untrusted agents using
proof-carrying code. In Mobile Agents and Security,
pages 61–91, London, UK, 1998. Springer-Verlag.

[59] N. Nethercote and J. Seward. Valgrind: a framework
for heavyweight dynamic binary instrumentation. In
PLDI ’07: Proceedings of the 2007 ACM SIGPLAN
Conference on Programming Language Design and
Implementation, pages 89–100, New York, NY, USA,
2007. ACM.

[60] R. Pass. On deniability in the common reference
string and random oracle model. In CRYPTO ’03:
Proceedings of the 23rd Annual International Cryp-
tology Conference on Advances in Cryptology, pages
316–337, London, UK, 2003. Springer-Verlag.

[61] J. Plummer. A flexible and expandable architecture
for computer games. Master’s thesis, Arizona State
University, 2004.

[62] T. Ristenpart, E. Tromer, H. Shacham, and S. Sav-
age. Hey, you, get off of my cloud! Exploring in-
formation leakage in third-party compute clouds. In
CCS ’09: Proceedings of the 16th ACM Conference
on Computer and Communications Security, pages
199–212, New York, NY, USA, 2009. ACM.

[63] G. N. Rothblum and S. Vadhan. Are PCPs inher-
ent in efficient arguments? In CCC ’09: Proceed-
ings of the 24th IEEE Annual Conference on Compu-
tational Complexity, pages 81–92, Washington, DC,
USA, 2009. IEEE Computer Society.

[64] J. A. Roy, F. Koushanfar, and I. L. Markov. Circuit
CAD tools as a security threat. In HOST ’08: Pro-
ceedings of the 1st IEEE International Workshop on
Hardware-Oriented Security and Trust, pages 65–66,
Washington, DC, USA, 2008. IEEE Computer Soci-
ety.

[65] A. D. Santis and M. Yung. Cryptograpic applications
of the non-interactive metaproof and many-prover
systems. In CRYPTO ’90: Proceedings of the 10th
Annual International Cryptology Conference on Ad-
vances in Cryptology, pages 366–377, London, UK,
1991. Springer-Verlag.

[66] G. E. Suh, J. W. Lee, D. Zhang, and S. Devadas.
Secure program execution via dynamic information
flow tracking. In ASPLOS ’04: Proceedings of the
11th International Conference on Architectural Sup-
port for Programming Languages and Operating Sys-
tems, pages 85–96, New York, NY, USA, 2004. ACM.

[67] E. Tromer and A. Shamir. Acoustic cryptanalysis,
2004. Eurocryt 2004 rump session; see http://people.
csail.mit.edu/tromer/acoustic.

[68] P. Valiant. Incrementally verifiable computation or
proofs of knowledge imply time/space efficiency. In
TCC ’08: Proceedings of the 5th Theory of Cryptog-
raphy Conference on Theory of Cryptography, pages
1–18, Berlin, Heidelberg, 2008. Springer-Verlag.

[69] N. Zeldovich, S. Boyd-Wickizer, E. Kohler, and
D. Mazières. Making information flow explicit in HiS-
tar. In OSDI ’06: Proceedings of the 7th USENIX
Symposium on Operating Systems Design and Imple-
mentation, pages 19–19, Berkeley, CA, USA, 2006.
USENIX Association.

331

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /KOR <FEFFd5a5c0c1b41c0020c778c1c40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c4fbf65bc63d066075217537054c18cea3002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f3002>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee563d09ad8625353708d2891cf30028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f003002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

