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Abstract
In this paper, our aim is to generalize the truncated M-fractional derivative which was recently introduced [Sousa and de
Oliveira, A new truncated M-fractional derivative type unifying some fractional derivative types with classical properties,
Inter. of Jour. Analy. and Appl., 16 (1), 83–96, 2018]. To do that, we used generalized M-series, which has a more general
form than Mittag-Leffler and hypergeometric functions. We called this generalization as truncated M-series fractional
derivative. This new derivative generalizes several fractional derivatives and satisfies important properties of the integer-
order derivatives. Finally, we obtain the analytical solutions of some M-series fractional differential equations.

Keywords: Truncated M-fractional derivative, alternative fractional derivative, conformable fractional derivative, M-series
AMS 2010 codes: 26A33, 34A08, 33E20.

1 Introduction

Fractional analysis is a field that is frequently studied by scientists because of its many applications used
to model real-world problems. In some recent studies, it is seen that mathematical models obtained by using
various fractional derivatives have better overlapping with experimental data rather than the models with integer
order derivatives. However, unlike integer order derivatives, different fractional derivative definitions may be
used for different types of problems. This situation led scientists to identify more general fractional operators.

Especially in the last five years, several generalizations of some well-known fractional derivative operators
have been addressed by many authors (see, for example [2, 3, 5, 6, 11, 18, 19, 33]). In addition to these studies,
different fractional derivative operators having many features provided by the integer order derivative operator
were also studied (see [16, 17, 27–31] and the references therein).
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In 2014, Khalil et al. [17] introduced a new type of fractional derivative for f : [0,∞)→ R, t > 0 and
α ∈ (0,1) as

Tα f (t) = lim
ε→0

f (t + εt1−α)− f (t)
ε

. (1)

They called it conformable fractional derivative.
In the same year, Katugampola [16] introduced the alternative and truncated alternative fractional derivatives

for f : [0,∞)→ R as

Dα( f )(t) = lim
ε→0

f (teεt−α

)− f (t)
ε

, t > 0, α ∈ (0,1) (2)

and

Dα
i ( f )(t) = lim

ε→0

f (teεt−α

i )− f (t)
ε

, t > 0, α ∈ (0,1) (3)

respectively. Here ex
i = ∑

i
k=0

xk

k! is the truncated exponential function.
Recently, Sousa and de Oliveira [27, 29] introduced the M-fractional and truncated M-fractional derivatives

for f : [0,∞)→ R as

Dα;β
M f (t) = lim

ε→0

f (tEβ (εt−α))− f (t)
ε

, β , t > 0, α ∈ (0,1) (4)

and

iD
α;β
M f (t) = lim

ε→0

f (t iEβ (εt−α))− f (t)
ε

, β , t > 0, α ∈ (0,1) (5)

respectively, by means of one parameter Mittag-Leffler function [12]

Eβ (z) =
∞

∑
k=0

zk

Γ(βk+1)
, ℜ(β )> 0, z ∈ C,

and its truncated version.
All the derivatives given above satisfies some properties of classical calculus, e.g. linearity, product rule,

quotient rule, function composition rule and chain rule. Besides, for all the operators given above the α-order
derivative of a function is a multiple of t1−α d f

dt .
In 2009, generalized M-series defined by Sharma and Jain [25, 26]

β ,γ

pMq (z) :=
β ,γ

pMq

[
a1 · · · ap

c1 · · · cq
;z
]
=

∞

∑
k=0

(a1)k · · ·(ap)k

(c1)k · · ·(cq)k

zk

Γ(βk+ γ)

where β ,γ,z ∈ C, p,q ∈ N, ℜ(β ) > 0, ci 6= 0,−1,−2, . . .(i = 1,2, . . . ,q). Here, (α)k is the Pochhammer
symbol [1] which given by

(α)ν =
Γ(α +ν)

Γ(α)
, α,ν ∈ C

with the assume (α)0 = 1. Note that if a j ( j = 1,2, . . . , p) equals to zero or a negative integer, then the series
reduces to a polynomial.

Generalized M-series is convergent for all z if p ≤ q; it is convergent for |z| < δ = αα if p = q+ 1; and
divergent if p > q+ 1. When p = q+ 1 and |z| = δ , the series can converge on conditions depending on the
parameters. For more information about M-series we refer [25, 26] and the references therein.
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Most of the famous special functions can be described as the special cases of the generalized M-series:

1,1
1M1 (1;1;z) =

∞

∑
k=0

zk

k!
= ez,

β ,1
1M1 (1;1;z) =

∞

∑
k=0

zk

Γ(βk+1)
= Eβ (z),

β ,γ

1M1 (1;1;z) =
∞

∑
k=0

zk

Γ(βk+ γ)
= Eβ ,γ(z),

β ,γ

1M1 (σ ;1;z) =
∞

∑
k=0

(σ)k zk

Γ(βk+ γ)
= Eσ

β ,γ(z),

1,1
1M1 (a;c;z) =

∞

∑
k=0

(a)k

(c)k

zk

k!
= Φ(a;c;z),

1,1
2M1 (a,b;c;z) =

∞

∑
k=0

(a)k(b)k

(c)k

zk

k!
= 2F1(a,b;c;z),

1,1
pMq (z) =

∞

∑
k=0

(a1)k · · ·(ap)k

(c1)k · · ·(cq)k

zk

k!
= pFq

[
a1 · · · ap

c1 · · · cq
;z
]
.

Here, Eβ , Eβ ,γ , Eσ

β ,γ are the one [23], two [32] and three parameters [24] Mittag-Leffler functions; and also
Φ, 2F1, pFq are the confluent, Gauss and generalized hypergeometric functions [1], respectively.

Motivated by the above studies and the frequent use of M-series in fractional operator theory (see [8–10,14,
21]), with the help of M-series, we first define a more general fractional derivative (truncated M-series fractional
derivative) and investigate its properties like linearity, product rule, the chain rule, etc. Then we extend some of
the classical results in calculus like Rolle’s theorem, mean value theorem etc. We also introduce the M-series
fractional integral and finally, we obtain the analytical solutions of ordinary and partial M-series fractional linear
differential equations.

2 Truncated M-series Fractional Derivative

We first present the definitions of the truncated M-series and truncated M-series fractional derivative opera-
tor.

Definition 1. The truncated M-Series is defined for β > 0 as

iM
β ,γ
p,q(t) = iM

β ,γ
p,q

[
a1 · · · ap

c1 · · · cq
; t
]

:=
i

∑
k=0

(a1)k · · ·(ap)k

(c1)k · · ·(cq)k

tk

Γ(βk+ γ)
(6)

where β ,γ, t ∈ R, p,q ∈ N, an,cm ∈ R, cm 6= 0,−1,−2, . . .(n = 1,2, . . . , p; m = 1,2, . . . ,q).

Definition 2. Let f : [0,∞)→ R. For β > 0, t > 0 and α ∈ (0,1), the truncated M-series fractional derivative
of order α of a function f is

iD
α

M f (t) = iD
α

M

[
a1 · · · ap

c1 · · · cq
;β ,γ

]
f (t)

:= lim
ε→0

f
(
Γ(γ)t iM

β ,γ
p,q(εt−α)

)
− f (t)

ε
, (7)

where α,β ,γ ∈ R, p,q ∈ N, an,cm ∈ R, cm 6= 0,−1,−2, . . .(n = 1,2, . . . , p; m = 1,2, . . . ,q) and iM
β ,γ
p,q is the

truncated M-series given with (6). If a truncated M-series fractional derivative of a function f exists then we
called the function f is M-differentiable.
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Note that, if f is M-differentiable in some interval (0,a), a > 0 and

lim
t→0+

iD
α

M f (t)

exists, then we define

iD
α

M f (0) = lim
t→0+

iD
α

M f (t).

Because Sousa and de Oliveira showed in [29] that, truncated M-fractional derivative (5) is the generalization
of the fractional derivative operators (1)-(4), it is enough to choose γ = p = q = 1 and a1 = c1 in (7) for proving
that the all the fractional derivative operators (1)-(5) given above are the special cases of our definition.

For the sake of shortness, throughout the paper we assume that α,β ,γ ∈ R, p,q ∈ N, β > 0, p > 0, q > 0,
an,cm ∈ R and cm 6= 0,−1,−2, . . .(n = 1,2, . . . , p; m = 1,2, . . . ,q). Also, we use the notation K instead of the
constant a1···ap

c1···cq

Γ(γ)
Γ(β+γ) .

Now we begin our investigation with an important theorem.

Theorem 1. If a function f : [0,∞)→ R is M-differentiable at t0 > 0 for α ∈ (0,1], then f is continuous at t0.

Proof. Consider the identity

f
(
Γ(γ)t0 iM

β ,γ
p,q(εt−α)

)
− f (t0) =

f
(
Γ(γ)t0 iM

β ,γ
p,q(εt−α)

)
− f (t0)

ε
ε.

Applying the limit for ε → 0 on both sides, we get

lim
ε→0

f
(
Γ(γ)t0 iM

β ,γ
p,q(εt−α)

)
− f (t0)

= lim
ε→0

(
f
(
Γ(γ)t0 iM

β ,γ
p,q(εt−α)

)
− f (t0)

ε

)
lim
ε→0

ε

= iD
α

M f (t) lim
ε→0

ε

= 0.

Then, f is continuous at t0.
Besides, using the definition of the truncated M-series, we can write

f
(
Γ(γ)t iM

β ,γ
p,q(εt−α)

)
= f

(
Γ(γ)t

i

∑
n=0

(a1)k · · ·(ap)k

(c1)k · · ·(cq)k

(εt−α)k

Γ(βk+ γ)

)
.

If we apply the limit for ε → 0 on both sides and since f is continuous, we get

lim
ε→0

f
(
Γ(γ)t iM

β ,γ
p,q(εt−α)

)
= f
(

Γ(γ)t lim
ε→0

i

∑
k=0

(a1)k · · ·(ap)k

(c1)k · · ·(cq)k

(εt−α)k

Γ(βk+ γ)

)
.

Because

lim
ε→0

i

∑
k=0

(a1)k · · ·(ap)k

(c1)k · · ·(cq)k

(εt−α)k

Γ(βk+ γ)
=

1
Γ(γ)

,

we can write
lim
ε→0

f
(
Γ(γ)t iM

β ,γ
p,q(εt−α)

)
= f (t).

The following theorem is about the basic properties of M-series fractional derivative:
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Theorem 2. Let α ∈ (0,1], a,b ∈ R and f ,g M-differentiable functions at a point t > 0. Then

(a) iD
α

M(a f +bg)(t) = a iD
α

M f (t)+b iD
α

Mg(t),

(b) iD
α

M( f ·g)(t) = f (t)iD
α

Mg(t)+g(t)iD
α

M f (t),

(c) iD
α

M

(
f
g

)
(t) =

g(t)iD
α

M f (t)− f (t)iD
α

Mg(t)
[g(t)]2

,

(d) If f is differentiable, then

iD
α

M( f ) =Kt1−α d f (t)
dt

, (8)

(e) If f ′(g(t)) exists, then
iD

α

M( f ◦g)(t) = f ′(g(t))iD
α

Mg(t).

Proof. The proof of the first three cases are quite simple and easily obtainable by following the same way with
the corresponding proofs of classical calculus. For (d): from the definition of truncated M-series we can write

iD
α

M f (t) = lim
ε→0

f
(
Γ(γ)t iM

β ,γ
p,q(εt−α)

)
− f (t)

ε

= lim
ε→0

f
(
Γ(γ)t( 1

Γ(γ) +
a1···ap
c1···cq

εt−α

Γ(β+γ) +O(ε2))− f (t)

ε

= lim
ε→0

f
(
t + εt1−α(K+O(ε))

)
− f (t)

ε

Choosing h = εt1−α
(
K+O(ε)

)
we get the result

iD
α

M f (t) =t1−α lim
ε→0

f
(
t +h)− f (t)

h
K+O(ε)

=Kt1−α d f (t)
dt

.

For (e): If g is a constant function in a neighborhood of a. Then clearly iD
α

M f (g(a)) = 0. Now, assume that g is
not a constant function, that is, we can find an ε > 0 for any t1, t2 ∈ (a− ε,a+ ε) such that g(t1) 6= g(t2). Since
g is continuous at a and for small enough ε , we have

iD
α

M( f ◦g)(a) = lim
ε→0

f
(
g(Γ(γ)a iM

β ,γ
p,q(εa−α))

)
− f
(
g(a)

)
ε

= lim
ε→0

f
(
g(Γ(γ)a iM

β ,γ
p,q(εa−α))

)
− f
(
g(a)

)
g(Γ(γ)a iM

β ,γ
p,q(εa−α))−g(a)

g(Γ(γ)a iM
β ,γ
p,q(εa−α))−g(a)

ε

= lim
ε1→0

f
(
g(Γ(γ)a iM

β ,γ
p,q(εa−α)

)
− f
(
g(a)

)
ε1

. lim
ε→0

g(Γ(γ)a iM
β ,γ
p,q(εa−α))−g(a)

ε

= f ′(g(a))iD
α

Mg(a),

with a > 0.

https://www.sciendo.com
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Example 3. Now we give the truncated M-series fractional derivatives of some well-known functions by using
the result (8). Let n ∈ R and α ∈ (0,1]. Then we have the following results

(a) iD
α

M(const.) = 0,

(b) iD
α

M(ent) =Knt1−αent ,

(c) iD
α

M(sinnt) =Knt1−α cosnt,

(d) iD
α

M(cosnt) =−Knt1−α sinnt,

(e) iD
α

M(tn) =Kntn−α ,

(f) iD
α

M

(
tα

α

)
=K.

Theorem 4 (Rolle’s theorem). Let a > 0 and f : [a,b]→ R be a function such that:

(a) f is continuous on [a,b],

(b) f is M-differentiable on (a,b) for some α ∈ (0,1),

(c) f (a) = f (b).

Then, there exists c ∈ (a,b), such that iD
α

M f (c) = 0.

Proof. Let f is a continuous function on [a,b] and f (a) = f (b), then there exists a point c ∈ (a,b) at which the
function f has a local extreme. Then,

iD
α

M f (c) = lim
ε→0−

f
(
Γ(γ)c iM

β ,γ
p,q(εt−α)

)
− f (c)

ε

= lim
ε→0+

f
(
Γ(γ)c iM

β ,γ
p,q(εt−α)

)
− f (c)

ε
,

Since
lim

ε→0±
iM

β ,γ
p,q(εt−α) =

1
Γ(γ)

,

the two limits have opposite sings. So iD
α

M f (c) = 0.

Theorem 5 (Mean value theorem). Let a > 0 and f : [a,b]→ R be a function such that:

(a) f is continuous on [a,b];

(b) f is M-differentiable on (a,b) for some α ∈ (0,1).

Then, there exists c ∈ (a,b), such that

iD
α

M f (c) =K
f (b)− f (a)

bα

α
− aα

α

.

Proof. Consider the following function:

g(t) = f (t)− f (a)−

(
f (b)− f (a)

bα

α
− aα

α

)(
tα

α
− aα

α

)
. (9)

The function g provides the conditions of the Rolle’s theorem. Then, there exists a point c ∈ (a,b) , such that
iD

α

Mg(c) = 0. Applying the new truncated M-series fractional derivative on both sides of the equality (9) and
using the properties (a) and (f) of Example 1, we have the result.
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Theorem 6 (Extended mean value theorem). Let f ,g : [a,b]→ R, a > 0 be two functions such that:

(a) f ,g are continuous on [a,b];

(b) f ,g are M-differentiable on (a,b) for some α ∈ (0,1).

Then, there exists c ∈ (a,b), such that:

iD
α

M f (c)

iD
α

Mg(c)
=

f (b)− f (a)
g(b)−g(a)

.

Proof. Consider the following function:

F(x) = f (t)− f (a)−
(

f (b)− f (a)
g(b)−g(a)

)
(g(t)−g(a)) . (10)

The function F provides the conditions of the Rolle’s theorem. Then, there exists a point c ∈ (a,b) , such that
iD

α

MF(c) = 0. Applying the truncated M-series fractional derivative on both sides of the equality (10) and using
the property (a) of Example 1, we have the result.

Theorem 7. Let a > 0 and f : [a,b]→ R be a function such that:

(a) f is continuous on [a,b];

(b) f is M-differentiable on (a,b) for some α ∈ (0,1).

If for all t ∈ (a,b) iD
α

M f (t) = 0, then f is a constant function on [a,b].

Proof. Assume that, for all t ∈ (a,b), iD
α

M f (t) = 0, and let, t1, t2 ∈ [a,b], with t1 < t2. Since f is also continuous
in [t1, t2] and M-differentiable in (t1, t2), from Rolle’s theorem, there exist a point c ∈ (t1, t2) with

iD
α

M f (c) =K
f (t2)− f (t1)

tα
2
α
− tα

1
α

= 0.

So, f (t1) = f (t2). Since t1 < t2 are arbitrary chosen from [a,b], f has to be a constant function.

Corollary 8. Let a > 0 and f ,g : [a,b]→ R be functions such that for all α ∈ (0,1) and t ∈ (a,b),

iD
α

M f (t) = iD
α

Mg(t).

Then, there exists a constant c such that f (t) = g(t)+ c

Proof. Apply Theorem 7 with choosing h(t) = f (t)−g(t).

Theorem 9. Let K> 0 and f : [a,b]→R be a function which continuous on [a,b] and M-differentiable on (a,b)
for some α ∈ (0,1). Then, for all t ∈ (a,b)

• if iD
α

M f (t)> 0, then f is increasing on [a,b],

• if iD
α

M f (t)< 0, then f is decreasing on [a,b].

Proof. From Theorem 7 we know that for t1, t2 ∈ [a,b] there exist a c ∈ (t1, t2) such as

iD
α

M f (c) =K
f (t2)− f (t1)

tα
2
α
− tα

1
α

.

If iD
α

M f (c) > 0 then f (t2) > f (t1) while t2 > t1, so f is increasing since t1 and t2 chosen arbitrary. But if
iD

α

M f (c)< 0 then f (t2)> f (t1) while t2 < t1 (or f (t2)< f (t1) while t2 > t1), so f is decreasing.
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Theorem 10. Let K> 0 and f ,g : [a,b]→R be functions which continuous on [a,b], M-differentiable on (a,b)
for some α ∈ (0,1) and for all t ∈ [a,b], iD

α

M f (t)≤ iD
α

Mg(t). Then,

• if f (a) = g(a), then f (t)≤ g(t) for all t ∈ [a,b],

• if f (b) = g(b), then f (t)≥ g(t) for all t ∈ [a,b].

Proof. The proof is trivial when you consider the function h(t) = g(t)− f (t).

Theorem 11. Let f : [0,∞)→ R be a two times differentiable function with t > 0 and α1,α2 ∈ (0,1). Then

iD
α1+α2
M f (t) 6= iD

α1
M

(
iD

α2
M f
)
(t).

Proof. From the equality (8) we have

iD
α1+α2
M f (t) =Kt1−α1−α2 f ′(t), (11)

but for the other side we have

iD
α1
M

(
iD

α2
M f
)
(t) = iD

α1
M

(
Kt1−α2 f ′(t)

)
=K2t1−α1

(
t1−α2 f ′(t)

)′
=K2t1−α1−α2

(
(1−α2) f ′(t)+ t f ′′(t)

)
. (12)

The proof is clear from (11) and (12).
The following result is the direct consequences of the previous theorem.

Corollary 12. Let f : [0,∞)→ R be a two times differentiable function with t > 0 and α1,α2 ∈ (0,1). Then

iD
α1
M

(
iD

α2
M f
)
(t) 6= iD

α2
M

(
iD

α1
M f
)
(t).

The following definition is about the M-series fractional derivative operator for α ∈ (n,n+1], n ∈ N.

Definition 3. Let α ∈ (n,n+ 1], n ∈ N and for t > 0, f be a n times differentiable function. The truncated
M-series fractional derivative of order α of f is given as

iD
α;n
M f (t) := lim

ε→0

f (n)
(
Γ(γ)t iM

β ,γ
p,q(εtn−α)

)
− f (n)(t)

ε
, (13)

if and only if the limit exists.

Remark 1. For t > 0, α ∈ (n,n+1] and for (n+1) times differentiable function f , it is easy to show that

iD
α;n
M f (t) =Ktn+1−α f (n+1)(t).

by using (13), (8) and induction on n.

3 M-series Fractional Integral

In this section, we defined the corresponding M-series fractional integral operator Iα

M f (t). We want that our
integral operator satisfies iD

α

M

(
Iα

M f (t)
)
= f (t). Let F(t) = Iα

M f (t) be a differentiable function, then from (8)
we have the following differential equation

f (t) = iD
α

M (F(t)) =Kt1−α dF(t)
dt

,

which have a solution of the form for an 6= 0, (n = 1,2, . . . , p)

F(t) =K−1
ˆ

f (t)
t1−α

dt.

This yields the following definition.
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Definition 4. Let a≥ 0 and t ≥ a, and f is defined in (a, t]. If the following improper Riemann integral exists,
then for α ∈ (0,1), the α order M-series fractional integral of a function f is defined by

Iα

M f (t) := Iα

M

[
a1 · · · ap

c1 · · · cq
;β ,γ

]
f (t) =K−1

ˆ t

a

f (t)
t1−α

dt, (14)

where the conditions are same as (7) with an 6= 0, n = 1,2, . . . , p.

Remark 2. It can easily seen from the definition of M-series fractional integral that, the integral operator is linear
and Iα

M f (a) = 0.
For the rest of the paper we assume that an 6= 0, n = 1,2, . . . , p.

Theorem 13. Let a≥ 0, α ∈ (0,1) and f is a continuous function such that Iα

M f (t) exists. Then for t ≥ a,

iD
α

M (Iα

M f (t)) = f (t).

Proof. Since f is continuous, Iα

M f (t) is differentiable. Then from (8) we have

iD
α

M (Iα

M f (t)) =Kt1−α d
dt
Iα

M f (t)

= t1−α d
dt

(ˆ t

a

f (t)
t1−α

dt
)

= f (t),

which completes the proof.

Theorem 14. Let f : (a,b)→ R be a differentiable function and α ∈ (0,1]. Then, for all t > a, we have

Iα

M (iD
α

M f (t)) = f (t)− f (a).

Proof. Since the function f is differentiable, by using the fundamental theorem of calculus for the integer-order
derivatives and (8), we get

Iα

M (iD
α

M f (t)) =K−1
ˆ t

a

iD
α

M f (t)
t1−α

dx

=

ˆ t

a

d f (t)
dt

dx

= f (t)− f (a),

which gives the result.
Remark 3. If f (a) = 0 then Iα

M

(
iD

α

M f (t)
)
= iD

α

M

(
Iα

M f (t)
)
= f (t).

Theorem 15. Let f : [a,b]→ R be a continuous function with 0 < a < b and α ∈ (0,1). Then for K > 0 we
have

|Iα

M f |(t)≤ Iα

M| f |(t).
Proof. From the definition of M-series fractional integral we have

|Iα

M f (t)|=
∣∣∣∣K−1

ˆ t

a

f (x)
x1−α

dx
∣∣∣∣

≤
∣∣K−1∣∣ ∣∣∣∣ˆ t

a

f (x)
x1−α

dx
∣∣∣∣

≤K−1
ˆ t

a

∣∣∣∣ f (x)
x1−α

∣∣∣∣dx

=K−1
ˆ t

a

| f (x)|
x1−α

dx,

which completes the proof.
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Corollary 16. Let f : [a,b]→ R be a continuous function such that

N = sup
t∈[a,b]

| f (t)|.

Then, for all t ∈ [a,b] with 0 < a < b, α ∈ (0,1) and K> 0 we have

|Iα

M f (t)| ≤K−1N
(

tα

α
− aα

α

)
.

Proof. From the previous theorem we have

|Iα

M f |(t)≤ Iα

M| f |(t)

=K−1
ˆ t

a

| f (x)|
x1−α

dx

=K−1N
ˆ t

a
xα−1dx,

which gives the result.

Theorem 17. Let f ,g : [a,b]→ R be two differentiable functions and α ∈ (0,1). Then

ˆ b

a
f (t)iD

α

Mg(t)dαt = f (t)g(t)
∣∣∣b
a
−
ˆ b

a
g(t)iD

α

M f (t)dαt,

where dαt =K−1tα−1dt.

Proof. Using the definition of M-series fractional integral (14), (8) and applying fundamental theorem of
calculus for integer-order derivatives, we get

ˆ b

a
f (t)iD

α

Mg(t)dαt =K−1
ˆ b

a

f (t)
t1−α iD

α

Mg(t)dt

=

ˆ b

a
f (t)

dg(t)
dt

dt

= f (t)g(t)
∣∣∣b
a
−
ˆ b

a
g(t)

d f (t)
dt

dt

= f (t)g(t)
∣∣∣b
a
−
ˆ b

a
g(t)iD

α

M f (t)dαt,

which completes the proof.
Now we define the M-series fractional integral for α ∈ (n,n+1] as follows.

Definition 5. Let a≥ 0 and t ≥ a, and f is defined in (a, t]. If the following improper Riemann integral exists,
then for α ∈ (n,n+1), the α order M-series fractional integral of a function f is defined by

Iα;n
M f (t) := Iα;n

M

[
a1 · · · ap

c1 · · · cq
;β ,γ

]
f (t) =K−1

ˆ t

a
dt
ˆ t

a
dt · · ·

ˆ t

a︸ ︷︷ ︸
n+1 times

f (t)
tn+1−α

dt, (15)

where the conditions are same as (7) with an 6= 0, n = 1,2, . . . , p.

The following theorem is a generalization of Theorem 14.
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Theorem 18. Let α ∈ (n,n+1] and f : [a,∞)→ R be (n+1) times differentiable function for t > a. Then we
have

Iα;n
M

(
iD

α;n
M f

)
(t) = f (t)−

n

∑
k=0

f (k)(a)(t−a)k

k!
.

Proof. From (7) and (15) we have

Iα;n
M

(
iD

α;n
M f

)
(t) =K−1

ˆ t

a
dt
ˆ t

a
dt · · ·

ˆ t

a︸ ︷︷ ︸
n+1 times

iD
α;n
M f (t)

tn+1−α
dt

=

ˆ t

a
dt
ˆ t

a
dt · · ·

ˆ t

a︸ ︷︷ ︸
n+1 times

f (n+1)(t)dt,

which gives the result.

4 Applications to M-series Fractional Differential Equations

In this section, we obtained the general solutions of linear fractional differential equations including the
M-series fractional derivative operator.

Example 19. Let u = u(t) is a M-differentiable function and assume that for α ∈ (0,1] the linear M-series
fractional differential equation

iD
α

Mu(t)+ p(t)u(t) = q(t) (16)

is given. If u is also a differentiable function then by using (8), we get a linear ordinary differential equation

du(t)
dt

+K−1tα−1 p(t)u(t) =K−1tα−1q(t).

The integrating factor of the equation can be found as µ(t) = eK
´

tα−1 p(t)dt , which yields the solution as

u(t) = e−K
−1 ´ p(t)

t1−α
dt
[
K−1
ˆ

q(t)
t1−α

eK
−1 ´ p(t)

t1−α
dtdt +C

]
,

where C is a constant. By definition of the M-series integral operator we can write the last equality as

u(t) = e−I
α

Mp(t)
[
Iα

M

(
q(t)eI

α

Mp(t)
)
+C
]
. (17)

If we choose p(t) =−λ , q(t) = 0, then the linear M-series fractional differential equation (16) turns to

iD
α

Mu(t) = λu(t),

and the general solution can be found from (17) as

u(t) =Ce−K
−1 λ

α
tα

.

Since et = ∞M
1,1
1,1(t), we can write the solution by means of truncated M-series as

u(t) =C∞M
1,1
1,1

(
−K−1 λ

α
tα

)
. (18)

For the fixed values an = 1, cm = 1, (n = 1,2, . . . , p; m = 1,2, . . . ,q), this result coincides with the results
given in [27] when λ = 1 and coincides with the corresponding integer-order result when α = β = λ = 1.
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Fig. 1 The graphs of (18) from α = 0.25 (green) to α = 1.00 (black) by step size 0.25.

In the following, the reader can find the graphs of the solution function (18) for different α,β and γ values
with the fixed values C = λ = 1 and an = 1, cm = 1, (n = 1,2, . . . , p; m = 1,2, . . . ,q).

Example 20. Consider the heat equation in one dimension

∂ αu(x, t)
∂ tα

= k
∂ 2u(x, t)

∂x2 , 0 < x < L, t > 0, (19)

with the initial and boundary conditions

u(0, t) = 0, u(L, t) = 0, u(x,0) = f (x), t ≥ 0, 0≤ x≤ L.

Here ∂ α

∂ tα = iD
α

M, u = u(x, t) is a M-differentiable function, α ∈ (0,1] and k is a positive constant. Suppose that
u(x, t) = P(x)Q(t). Using separation of variables method we get a system of differential equations

dα

dtα
Q(t)− kξ Q(t) = 0,

d2

dx2 P(x)−ξ P(x) = 0.

From the above example and the ordinary differential equations theory, we know that these equations have
solutions of the form

Qn(t) = e−K
−1( nπ

L )
2 k

α
tα

, n = 1,2,3, . . .

Pn(x) = sin
(nπx

L

)
, n = 1,2,3, . . .
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So, the formal solution of the heat equation (19) is

u(x, t) =
∞

∑
n=0

bn sin
(nπx

L

)
e−K

−1( nπ

L )
2 k

α
tα

, (20)

where bn =
2
L

´ L
0 f (x)sin

(nπx
L

)
dx.

Let us fixed the values an = 1, cm = 1, (n = 1,2, . . . , p; m = 1,2, . . . ,q) in (20). Choosing γ = 1 yields us
the same result in [29]; γ = β = 1 yields us the same result in [7], and α = β = γ = 1 yields us the same result
with the integer-order heat equation.

If we choose f (x) = sin(x), L = π, k = 1 in (19) we have

u(x, t) =
2
π

∞

∑
n=0

ˆ
π

0
sin(x)sin(nx)dxsin(nx)e−K

−1 n2
α

tα

,

which differ from 0 only for n = 1. So, the solution of the problem is

u(x, t) = sin(x)e−K
−1 tα

α . (21)

This result is the same as the corresponding integer-order problem when an = 1, cm = 1, (n = 1,2, . . . , p; m =
1,2, . . . ,q) and α = β = γ = 1.

In the following, the reader can find the graphs which obtained by (21), for different values of α, β and γ

with the fixed values an = 1, cm = 1, (n = 1,2, . . . , p; m = 1,2, . . . ,q).

Fig. 2 The graphs of (21) from α = 0.25 (bottom) to α = 1.00 (top) by step size 0.25.
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Example 21. Let f : [0,∞)→ R, t > a > 0. Consider the following M-series fractional differential equation

iD
α

M (iD
α

M f )+ p(t)iD
α

M f +q(t) f = 0 (22)

where p and q are M-differentiable functions of t. Assume that (22) has a solution, say f1. To find the second
linearly independent solutions of (22), we start by assuming that f2(t) = v(t) f1(t) where v is an M-differentiable
function. So, from the chain rule, we have

iD
α

M f2(t) = iD
α

M(v f1)(t) = v(t)iD
α

M f1(t)+ f1(t)iD
α

Mv(t),

iD
α

M (iD
α

M f2)(t) = iD
α

M(v(t)iD
α

M f1(t)+ f1(t)iD
α

Mv(t))

= v(t)iD
α

M (iD
α

M f1)(t)+ iD
α

M f1(t)iD
α

Mv(t)+ f1(t)iD
α

M (iD
α

Mv)(t)+ iD
α

M f1(t)iD
α

Mv(t).

Substituting these in (22) and remembering that f1 is a solution of it, we get

f1(t)iD
α

M (iD
α

Mv)(t)+2iD
α

M f1(t)iD
α

Mv(t)+ p(t) f1(t)iD
α

Mv(t) = 0.

Now, if we let w(t) = iD
α

Mv(t), then it becomes

iD
α

Mw(t)+
(

p(t)+2 iD
α

M f1(t)
f1(t)

)
w(t) = 0.

From Example 19, the solution of this equation can be found as

w(t) =Ce
−Iα

M

(
p(t)+2 iD

α
M

f1(t)
f1(t)

)
=C

e−I
α

Mp(t)

f 2
1 (t)

, (C ∈ R),

which yields

v(t) =CIα

M

(
e−I

α

Mp

f 2
1 (t)

)
.

Then we find the second solution as

f2(t) =C f1(t)Iα

M

(
e−I

α

Mp

f 2
1 (t)

)
. (23)

Example 22. Consider the following differential equation for f : [0,∞)→ R, t > a > 0:

iD
2
3
MiD

2
3
M f − t

1
3 iD

2
3
M f = 0.

Clearly, f1(t) = 1 is a solution of this equation and p(t) = −t
1
3 . Using formula (23) we obtain the second

solution as

f2(t) =CI
2
3
M

(
eI

2
3
M(t

1
3 )

)
.

The M-series fractional integral

I
2
3
M(t

1
3 ) =K−1(t−a),

can be found by using the definition of I
2
3
M. From here we get,

f2(t) =CI
2
3
M

(
eK
−1(t−a)

)
=CK−1e−K

−1a
ˆ t

a
x−

1
3 eK

−1xdx.

https://www.sciendo.com


A generalization of truncated M-fractional derivative 185

With transformation u =−K−1x we have,

f2(t) =CK−
1
3 e−K

−1a

[ˆ −K−1t

−K−1a
u−

1
3 e−udu

]

=CK−
1
3 e−K

−1a
[ˆ

∞

−K−1a
u−

1
3 e−udu−

ˆ
∞

−K−1t
u−

1
3 e−udu

]
, (t > a > 0)

=CK−
1
3 e−K

−1a [
Γ(2/3,−K−1a)−Γ(2/3,−K−1t)

]
,

where γ is the incomplete gamma function which defined as

Γ(δ ,ν) =

ˆ
∞

ν

tδ−1e−tdt,

for δ > 0. From here we get the solution as

f (t) = 1+CK−
1
3 e−K

−1a [
Γ(2/3,−K−1a)−Γ(2/3,−K−1t)

]
. (24)

For the fixed values an = 1, cm = 1, (n = 1,2, . . . , p; m = 1,2, . . . ,q), this result coincides with the results
given in [15] when c = β = γ = 1.

In the following, we plotted the graphs of solution function which obtained by (24), for different values of
β and γ with the fixed values a = 0, c = 1, α = 2

3 and c1···cq
a1···ap

=−1.

Fig. 3 The graphs of (24) for the values β = γ = 1 (black); β = 0.5,γ = 1 (blue); β = 1,γ = 0.5 (red) and β = γ = 0.5
(green).
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5 Concluding Remarks and Observations

In this paper, we first presented a fractional derivative operator, which is also a generalization of truncated
M-fractional derivative, by using generalized M-series. Then we gave a definition of corresponding integral
operator. Unlike fractional operators with different kernels, we showed that there are many common properties
provided by both these and the corresponding integer-order operators. We also used these operators in differen-
tial equation problems as application and we plotted the graphs of the solutions for various values of α,β and γ .
These problems are hard to solve by means of the classical definitions of fractional derivatives.

Besides, from equality (e) of Example 1, we observed that, for polynomials, truncated M-series fractional
derivative coincides with the Riemann-Liouville and Caputo fractional derivatives [20] up to a constant multiple.
In this case, we can say that the truncated M-series fractional derivative operator can be used instead of Riemann-
Liouville or Caputo type derivatives (and also their generalizations) to solve some difficult problems.

Our definition is also a generalization of the V-fractional derivative for p = q = 1 which defined in [28]. It
is also possible to define new fractional derivatives by using other special functions instead of M-series. Since
M-series is a general class of special functions, all future definitions have chance to be the special cases of our
definition. Further properties and applications of M-series fractional operators will be discussed in forthcoming
papers.
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[18] İ. O. Kıymaz, A. Çetinkaya, P. Agarwal, , (2016), An extension of Caputo fractional derivative operator and its appli-

cations, Journal of Nonlinear Science and Applications, 9 (6), pp. 3611–3621.
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