Permitivita

fyzikální veličina
Možná hledáte: Relativní permitivita (bezrozměrná jednotka) nebo Permitivita vakua (fyzikální konstanta).

Permitivita (absolutní permitivita) je v elektrotechnice fyzikální veličina označovaná obvykle řeckým písmenem ε (epsilon), která vyjadřuje míru odporu při vytváření elektrického pole v určitém přenosovém médiu. Permitivita vyjadřuje schopnost materiálu odolávat elektrickému poli. Jednotka permitivity v soustavě SI je farad na metr (F/m neboli F m−1), v základních jednotkách s4 A2 m−3 kg−1. Může mít skalární i vektorový charakter (jako komplexní číslo).

Permitivita
Název veličiny
a její značka
Permitivita
ε
Hlavní jednotka SI
a její značka
farad na metr
F ⋅ m−1
Definiční vztah
Dle transformace složekskalární
Zařazení jednotky v soustavě SIodvozená

Charakteristika

editovat

V izotropním dielektriku je permitivita skalární veličina. V obecném případě se však jedná o tenzor druhého řádu, protože u neizotropních dielektrik mohou mít vektory intenzity elektrického pole a elektrické indukce různý směr. Ve střídavém elektrickém poli mohou kmitat s posunutou fází a pro vyjádření permitivity se používá komplexní číslo (viz dále).

Permitivita jako skalární veličina

editovat

Nejnižší permitivitu má vakuum a jeho hodnota je někdy označována jako fyzikální konstanta permitivita vakuaε0 (řecké písmeno epsilon nula) a má hodnotu přibližně 8,85.10-12 F.m-1.

Permitivita dielektrika určitého materiálu je však často reprezentována poměrem absolutní permitivity k permitivitě vakua. Tato bezrozměrná veličina se nazývá relativní permitivita, někdy zkráceně permitivita (materiálu). Dříve byla nazývána „dielektrická konstanta”, což je zastaralé fyzikální, inženýrské[1] a chemické označení.[2]

 ,

kde εr je relativní permitivita, ε je absolutní permitivita materiálu a ε0 je permitivita vakua. Podle definice má vakuum nejnižší permitivitu, a tudíž jeho relativní permitivita je přesně 1,0 a relativní permitivity všech ostatních materiálů jsou vyšší. (Relativní) permitivitu vakua a vzduchu lze považovat za stejnou, protože κvzduch = 1,000 6.

Definiční vztah

editovat

Permitivitu lze určit ze vztahu

 ,

kde   je elektrická indukce a   intenzita elektrického pole.

V izotropním dielektriku se jedná o skalární veličinu. V obecném případě se jedná o tenzor druhého řádu, protože u neizotropních dielektrik mohou mít vektory intenzity elektrického pole a elektrické indukce různý směr. V takovém případě je vztah vhodné zapsat například ve složkovém tvaru:

  .

Pro střídavé elektromagnetické vlnění je permitivita představována funkcí závislou na frekvenci vlnění f a je komplexní. Je rovna podílu fázorů vektorů elektrické indukce   a intenzity elektrického pole  :

 .

Permitivita se spolu s permeabilitou vyskytuje též ve vztahu pro rychlost libovolného elektromagnetického vlnění. V nevodivém látkovém prostředí platí

 ,

kde   je rychlost šíření elektromagnetických vln. Při šíření elektromagnetických vln ve vakuu pak vychází speciální případ uvedeného vztahu

 ,

kde   je rychlost světla.

nehomogenním a neizotropním prostředí může být permitivita vyjádřena symetrickým tenzorem druhého řádu.

Komplexní permitivita

editovat

Pro matematický popis šíření vlny je výhodné i zavedení komplexní permitivity εk. Komplexní permitivita má smysl pouze pro fázory, tedy pro pole, která v závislosti na čase má harmonický průběh E(t) = E0 sin(wt) nebo E(t) = E0 cos(wt) a jde o veličinu umělou.

Definice komplexní permitivity je

εk =  ε − j σ/w

popřípadě po vytknutí ε

εk = ε [1 − j σ/(εw)],

kde w je kruhový kmitočet, σ měrná vodivost a j je imaginární jednotka.

Je třeba rozlišovat permitivitu „obyčejnou“ ε a „komplexní“ εk.

V případě σ = 0 přejde komplexní permitivita v permitivitu obyčejnou.

Komplexní permitivita má reálnou a imaginární část:

εk = ε′ − jε″,

přičemž  ε′ = Re εk = ε  a  ε″ =  Im εk = σ/w.

Reálnou částí komplexní permitivity je normální permitivita.

Pro fázory lze pak přepsat první Maxwellovu rovnici na jednoduchý  tvar

rot H = jwεk E,

kde H je fázor vektoru intenzity magnetického pole a E je fázor vektoru intenzity elektrického pole. Tento tvar je platný  jak pro bezeztrátové prostředí (σ = 0), tak pro prostředí se ztrátami (σ > 0), pravá strana vyjadřuje totiž součet hustoty posuvného a vodivého proudu.

Poznámka: někteří autoři značí εk = ε/ε0 j σ/(ε0w), kde apostrof na rozdíl od zde uvedené symboliky značí relativní (a zároveň  „k“ komplexní) permitivitu. Po dosazení za permitivitu vakua ε0 číselně lze psát εk =  ε/ε0 j 60 λ0 σ, přičemž ε/ε0 = εr  je relativní „obyčejná“ permitivita a λ0 je vlnová délka ve vakuu. Apostrof tedy u těchto autorů představuje relativní permitivitu, nikoliv reálnou část komplexní permitivity jak je označena v tomto pojednání.

Reference

editovat
  1. IEEE Standards Board. IEEE Standard Definitions of Terms for Radio Wave Propagation [online]. 1997. S. 6. Dostupné online. 
  2. BRASLAVSKY, S.E. Glossary of terms used in photochemistry (IUPAC recommendations 2006). Pure and Applied Chemistry. 2007, s. 293–465. Dostupné online. DOI 10.1351/pac200779030293. 

Literatura

editovat
  • Elektrotechnické tabulky pro průmyslové školy, SPN, Praha 1959, str. 22-25

Související články

editovat

Externí odkazy

editovat
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy