


default search action
ICONS 2023: Santa Fe, NM, USA
- Catherine D. Schuman, Melika Payvand, Maryam Parsa:
Proceedings of the 2023 International Conference on Neuromorphic Systems, ICONS 2023, Santa Fe, NM, USA, August 1-3, 2023. ACM 2023 - Samuel Schmidgall
, Joe Hays
:
Synaptic motor adaptation: A three-factor learning rule for adaptive robotic control in spiking neural networks. 1:1-1:9 - Stein Stroobants
, Christophe De Wagter
, Guido de Croon
:
Neuromorphic Control using Input-Weighted Threshold Adaptation. 2:1-2:8 - Shruti R. Kulkarni
, Aaron R. Young
, Prasanna Date
, Narasinga Rao Miniskar
, Jeffrey S. Vetter
, Farah Fahim
, Benjamin Parpillon
, Jennet Dickinson
, Nhan Tran
, Jieun Yoo
, Corrinne Mills
, Morris Swartz
, Petar Maksimovic
, Catherine D. Schuman
, Alice Bean
:
On-Sensor Data Filtering using Neuromorphic Computing for High Energy Physics Experiments. 3:1-3:8 - Ryan O'Loughlin
, Bryce A. Primavera
, Jeffrey Shainline
:
Dendritic Learning in Superconducting Optoelectronic Networks. 4:1-4:8 - Vijay Shankaran Vivekanand
, Samarth Chopra
, Shahin Hashemkhani
, Rajkumar Chinnakonda Kubendran
:
Robot Locomotion through Tunable Bursting Rhythms using Efficient Bio-mimetic Neural Networks on Loihi and Arduino Platforms. 5:1-5:7 - Simon Roy, François-Michel De Rainville, Marc-Antoine Drouin, Simon Savary, Terrence C. Stewart:
Event-based stereopsis with wearable stereo vision demonstrator. 6:1-6:4 - Terrence C. Stewart
, Marc-Antoine Drouin
, Michel Picard
, Frank Billy Djupkep Dizeu
, Antony Orth
, Guillaume Gagné
:
Using neuromorphic cameras to track quadcopters. 7:1-7:5 - Yi Tian
, Juan Andrade-Cetto
:
Egomotion from event-based SNN optical flow. 8:1-8:8 - Shay Snyder
, Sumedh R. Risbud
, Maryam Parsa
:
Neuromorphic Bayesian Optimization in Lava. 9:1-9:5 - Charles Rizzo
, Luke McCombs
, Braxton Haynie
, Catherine D. Schuman
, James S. Plank
:
DVSGesture Recognition with Neuromorphic Observation Space Reduction Techniques. 10:1-10:8 - Gintautas Palinauskas
, Camilo Amaya
, Evan Eames
, Michael Neumeier
, Axel von Arnim
:
Generating Event-Based Datasets for Robotic Applications using MuJoCo-ESIM. 11:1-11:7 - Hitesh Ahuja
, Rajkumar Kubendran
:
High-resolution Extreme-throughput Event-based Cameras using GALS Data-scanning Architecture. 12:1-12:6 - James Ghawaly
, Aaron R. Young
, Andrew D. Nicholson
, Brett Witherspoon
, Nick Prins
, Mathew Swinney
, Cihangir Celik
, Catherine D. Schuman
, Karan Patel
:
Performance Optimization Study of the Neuromorphic Radiation Anomaly Detector. 13:1-13:7 - Lillian Sharpe
, Julia Steed
, Md. Mazharul Islam
, Ahmedullah Aziz
, Catherine D. Schuman
:
Impact of Neuron Firing Rate on Application and Algorithm Performance. 14:1-14:4 - Gavin Parpart
, Sumedh R. Risbud
, Garrett T. Kenyon
, Yijing Watkins
:
Implementing and Benchmarking the Locally Competitive Algorithm on the Loihi 2 Neuromorphic Processor. 15:1-15:6 - Jamie Lohoff
, Zhenming Yu
, Jan Finkbeiner
, Anil Kaya
, Kenneth Michael Stewart, Hin Wai Lui
, Emre Neftci
:
Interfacing Neuromorphic Hardware with Machine Learning Frameworks - A Review. 16:1-16:8 - Peter Helfer
, Corinne Teeter
, Aaron J. Hill
, Craig M. Vineyard
, James B. Aimone
, Dhireesha Kudithipudi
:
Context Modulation Enables Multi-tasking and Resource Efficiency in Liquid State Machines. 17:1-17:9 - Zaidao Mei
, Boyu Wang
, Daniel Patrick Rider, Qinru Qiu
:
SEnsitivity Modulated Importance Networking and Rehearsal for Spike Domain Incremental Learning. 18:1-18:8 - James A. Boyle
, Mark Plagge
, Suma George Cardwell
, Frances S. Chance
, Andreas Gerstlauer
:
Performance and Energy Simulation of Spiking Neuromorphic Architectures for Fast Exploration. 19:1-19:4 - Mike Stuck
, Richard Naud
:
Burstprop for Learning in Spiking Neuromorphic Hardware. 20:1-20:5 - Hongyi Li
, Mingkun Xu
, Jing Pei
, Rong Zhao
:
Efficient GCN Deployment with Spiking Property on Spatial-Temporal Neuromorphic Chips. 21:1-21:8 - Jeff Orchard
, Russell Jarvis
:
Hyperdimensional Computing with Spiking-Phasor Neurons. 22:1-22:7 - Edoardo W. Grappolini
, Anand Subramoney
:
Beyond Weights: Deep learning in Spiking Neural Networks with pure synaptic-delay training. 23:1-23:4 - Shay Snyder
, Kevin Zhu
, Ricardo Vega
, Cameron Nowzari
, Maryam Parsa
:
Zespol: A Lightweight Environment for Training Swarming Agents. 24:1-24:5 - Raphael Norman-Tenazas
, Isaac Western
, Gautam K. Vallabha
, Matthew J. Roos
, Erik C. Johnson
, Brian S. Robinson
:
Enabling local learning for generative-replay-based continual learning with a recurrent model of the insect memory center. 25:1-25:7 - Wilkie Olin-Ammentorp
:
Sparsifying Spiking Networks through Local Rhythms. 26:1-26:4 - Melika Payvand
, Simone D'Agostino
, Filippo Moro
, Yigit Demirag
, Giacomo Indiveri
, Elisa Vianello
:
Dendritic Computation through Exploiting Resistive Memory as both Delays and Weights. 27:1-27:4 - Juan Pablo Romero Bermudez
, Luis A. Plana
, Andrew Rowley
, Mikael Hessel
, Jens Egholm Pedersen
, Steve B. Furber
, Jörg Conradt:
A High-Throughput Low-Latency Interface Board for SpiNNaker-in-the-loop Real-Time Systems. 28:1-28:8 - Ming-Jay Yang
, John Paul Strachan
:
State-Space Modeling and Tuning of Memristors for Neuromorphic Computing Applications. 29:1-29:8 - Jimmy Weber
, Chenxi Wu
, Melika Payvand
:
GMap : An Open-source Efficient Compiler for Mapping any Network onto any Neuromophic Chip. 30:1-30:4 - Ruomin Zhu
, Jason Eshraghian
, Zdenka Kuncic
:
Memristive Reservoirs Learn to Learn. 31:1-31:7 - Anindya Ghosh
, Thomas Nowotny
, James C. Knight
:
Insect-inspired Spatio-temporal Downsampling of Event-based Input. 32:1-32:5 - Ole Richter
, Hugh Greatorex
, Benjamin Hucko
, Madison Cotteret
, Willian Soares Girão
, Ella Janotte
, Michele Mastella
, Elisabetta Chicca
:
A Subthreshold Second-Order Integration Circuit for Versatile Synaptic Alpha Kernel and Trace Generation. 33:1-33:4 - Michele Mastella
, Hugh Greatorex
, Madison Cotteret
, Ella Janotte
, Willian Soares Girão
, Ole Richter
, Elisabetta Chicca
:
Synaptic Normalisation for On-Chip Learning in Analog CMOS Spiking Neural Networks. 34:1-34:4 - Suma George Cardwell
, Frances S. Chance
:
Dendritic Computation for Neuromorphic Applications. 35:1-35:5 - Alexander James White
, Chou P. Hung
, Andre V. Harrison
, Chung-Chuan Lo
:
Neuromorphic luminance-edge contextual preprocessing of naturally obscured targets. 36:1-36:8 - Douglas Cale Crowder
, John Darby Smith
, Suma George Cardwell
:
Deep Reinforcement Learning Methods for Discovering Novel Neuromorphic Devices. 37:1-37:8 - Kyle Henke
, Elijah Pelofske
, Georg Hahn
, Garrett T. Kenyon
:
Sampling binary sparse coding QUBO models using a spiking neuromorphic processor. 38:1-38:5 - Shelah Ameli
, Adam Z. Foshie
, Drew Friend
, James S. Plank
, Garrett S. Rose
, Catherine D. Schuman
:
Algorithm and Application Impacts of Programmable Plasticity in Spiking Neuromorphic Hardware. 39:1-39:6 - Prasanna Date
, Chathika Gunaratne
, Shruti R. Kulkarni
, Robert M. Patton
, Mark Coletti
, Thomas E. Potok
:
SuperNeuro: A Fast and Scalable Simulator for Neuromorphic Computing. 40:1-40:4 - Melvin Estuardo Galicia
, Ibrahim Jimale Osman
, Christian Owusu-Afriyie
, Rainer Leupers
:
"S3cure": Scramble, Shuffle and Shambles - Secure Deployment of Weight Matrices in Memristor Crossbar Arrays. 41:1-41:8 - William Severa
, Suma George Cardwell
, Michael Krygier
, Fredrick H. Rothganger
, Craig Michael Vineyard
:
Neuromorphic Population Evaluation using the Fugu Framework. 42:1-42:7

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.