default search action
xAI 2023: Lisbon, Portugal
- Luca Longo:
Explainable Artificial Intelligence - First World Conference, xAI 2023, Lisbon, Portugal, July 26-28, 2023, Proceedings, Part III. Communications in Computer and Information Science 1903, Springer 2023, ISBN 978-3-031-44069-4
xAI for Time Series and Natural Language Processing
- Mohamad Ballout, Ulf Krumnack, Gunther Heidemann, Kai-Uwe Kühnberger:
Opening the Black Box: Analyzing Attention Weights and Hidden States in Pre-trained Language Models for Non-language Tasks. 3-25 - Milan Bhan, Nina Achache, Victor Legrand, Annabelle Blangero, Nicolas Chesneau:
Evaluating Self-attention Interpretability Through Human-Grounded Experimental Protocol. 26-46 - Sargam Yadav, Abhishek Kaushik, Kevin McDaid:
Understanding Interpretability: Explainable AI Approaches for Hate Speech Classifiers. 47-70 - Van Bach Nguyen, Jörg Schlötterer, Christin Seifert:
From Black Boxes to Conversations: Incorporating XAI in a Conversational Agent. 71-96 - Muhammad Deedahwar Mazhar Qureshi, Muhammad Atif Qureshi, Wael Rashwan:
Toward Inclusive Online Environments: Counterfactual-Inspired XAI for Detecting and Interpreting Hateful and Offensive Tweets. 97-119 - Amir Miraki, Austeja Dapkute, Vytautas Siozinys, Martynas Jonaitis, Reza Arghandeh:
Causal-Based Spatio-Temporal Graph Neural Networks for Industrial Internet of Things Multivariate Time Series Forecasting. 120-130 - Carlos Gómez-Tapia, Bojan Bozic, Luca Longo:
Investigating the Effect of Pre-processing Methods on Model Decision-Making in EEG-Based Person Identification. 131-152 - Yiran Huang, Chaofan Li, Hansen Lu, Till Riedel, Michael Beigl:
State Graph Based Explanation Approach for Black-Box Time Series Model. 153-164 - Udo Schlegel, Daniel A. Keim:
A Deep Dive into Perturbations as Evaluation Technique for Time Series XAI. 165-180
Human-Centered Explanations and xAI for Trustworthy and Responsible AI
- Ivania Donoso-Guzmán, Jeroen Ooge, Denis Parra, Katrien Verbert:
Towards a Comprehensive Human-Centred Evaluation Framework for Explainable AI. 183-204 - Giulia Vilone, Luca Longo:
Development of a Human-Centred Psychometric Test for the Evaluation of Explanations Produced by XAI Methods. 205-232 - Lucie Charlotte Magister, Pietro Barbiero, Dmitry Kazhdan, Federico Siciliano, Gabriele Ciravegna, Fabrizio Silvestri, Mateja Jamnik, Pietro Liò:
Concept Distillation in Graph Neural Networks. 233-255 - Lutz Terfloth, Michael Erol Schaffer, Heike M. Buhl, Carsten Schulte:
Adding Why to What? Analyses of an Everyday Explanation. 256-279 - Ulrike Kuhl, André Artelt, Barbara Hammer:
For Better or Worse: The Impact of Counterfactual Explanations' Directionality on User Behavior in xAI. 280-300 - Tobias M. Peters, Roel W. Visser:
The Importance of Distrust in AI. 301-317 - Giacomo De Bernardi, Sara Narteni, Enrico Cambiaso, Marco Muselli, Maurizio Mongelli:
Weighted Mutual Information for Out-Of-Distribution Detection. 318-331 - Alessandro Castelnovo, Nicole Inverardi, Lorenzo Malandri, Fabio Mercorio, Mario Mezzanzanica, Andrea Seveso:
Leveraging Group Contrastive Explanations for Handling Fairness. 332-345 - Andres Algaba, Carmen Mazijn, Carina Prunkl, Jan Danckaert, Vincent Ginis:
LUCID-GAN: Conditional Generative Models to Locate Unfairness. 346-367
Explainable and Interpretable AI with Argumentation, Representational Learning and Concept Extraction for xAI
- Nicoletta Prentzas, Constantinos S. Pattichis, Antonis C. Kakas:
Explainable Machine Learning via Argumentation. 371-398 - Lucas Rizzo:
A Novel Structured Argumentation Framework for Improved Explainability of Classification Tasks. 399-414 - Stephan Wäldchen:
Hardness of Deceptive Certificate Selection. 415-427 - Alexandre Goossens, Jan Vanthienen:
Integrating GPT-Technologies with Decision Models for Explainability. 428-448 - Eric Yeh, Pedro Sequeira, Jesse Hostetler, Melinda T. Gervasio:
Outcome-Guided Counterfactuals from a Jointly Trained Generative Latent Space. 449-469 - Anastasia Natsiou, Seán O'Leary, Luca Longo:
An Exploration of the Latent Space of a Convolutional Variational Autoencoder for the Generation of Musical Instrument Tones. 470-486 - Daisuke Yasui, Hiroshi Sato, Masao Kubo:
Improving Local Fidelity of LIME by CVAE. 487-511 - Andres Felipe Posada-Moreno, Kai Müller, Florian Brillowski, Friedrich Solowjow, Thomas Gries, Sebastian Trimpe:
Scalable Concept Extraction in Industry 4.0. 512-535
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.