default search action
Chris Schwiegelshohn
Person information
- affiliation: Aarhus University, Denmark
- affiliation (former): TU Dortmund, Germany
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j6]Andrew Draganov, David Saulpic, Chris Schwiegelshohn:
Settling Time vs. Accuracy Tradeoffs for Clustering Big Data. Proc. ACM Manag. Data 2(3): 173 (2024) - [c37]Jakob Burkhardt, Ioannis Caragiannis, Karl Fehrs, Matteo Russo, Chris Schwiegelshohn, Sudarshan Shyam:
Low-Distortion Clustering with Ordinal and Limited Cardinal Information. AAAI 2024: 9555-9563 - [c36]Nikhil Bansal, Vincent Cohen-Addad, Milind Prabhu, David Saulpic, Chris Schwiegelshohn:
Sensitivity Sampling for k-Means: Worst Case and Stability Optimal Coreset Bounds. FOCS 2024: 1707-1723 - [c35]Peyman Afshani, Chris Schwiegelshohn:
Optimal Coresets for Low-Dimensional Geometric Median. ICML 2024 - [c34]Mikael Møller Høgsgaard, Lior Kamma, Kasper Green Larsen, Jelani Nelson, Chris Schwiegelshohn:
Sparse Dimensionality Reduction Revisited. ICML 2024 - [c33]Chandra Chekuri, Aleksander Bjørn Grodt Christiansen, Jacob Holm, Ivor van der Hoog, Kent Quanrud, Eva Rotenberg, Chris Schwiegelshohn:
Adaptive Out-Orientations with Applications. SODA 2024: 3062-3088 - [i31]Jakob Burkhardt, Ioannis Caragiannis, Karl Fehrs, Matteo Russo, Chris Schwiegelshohn, Sudarshan Shyam:
Low-Distortion Clustering with Ordinal and Limited Cardinal Information. CoRR abs/2402.04035 (2024) - [i30]Andrew Draganov, David Saulpic, Chris Schwiegelshohn:
Settling Time vs. Accuracy Tradeoffs for Clustering Big Data. CoRR abs/2404.01936 (2024) - [i29]Nikhil Bansal, Vincent Cohen-Addad, Milind Prabhu, David Saulpic, Chris Schwiegelshohn:
Sensitivity Sampling for k-Means: Worst Case and Stability Optimal Coreset Bounds. CoRR abs/2405.01339 (2024) - [i28]Beatrice Bertolotti, Matteo Russo, Chris Schwiegelshohn:
A Simple and Optimal Sublinear Algorithm for Mean Estimation. CoRR abs/2406.05254 (2024) - [i27]Jakob Burkhardt, Hannah Keller, Claudio Orlandi, Chris Schwiegelshohn:
Distributed Differentially Private Data Analytics via Secure Sketching. CoRR abs/2412.00497 (2024) - [i26]Karthik C. S., Euiwoong Lee, Yuval Rabani, Chris Schwiegelshohn, Samson Zhou:
On Approximability of ℓ22 Min-Sum Clustering. CoRR abs/2412.03332 (2024) - [i25]Jakob Burkhardt, Hannah Keller, Claudio Orlandi, Chris Schwiegelshohn:
Distributed Differentially Private Data Analytics via Secure Sketching. IACR Cryptol. ePrint Arch. 2024: 1946 (2024) - 2023
- [c32]Tung Mai, Alexander Munteanu, Cameron Musco, Anup Rao, Chris Schwiegelshohn, David P. Woodruff:
Optimal Sketching Bounds for Sparse Linear Regression. AISTATS 2023: 11288-11316 - [c31]Chris Schwiegelshohn:
Fitting Data on a Grain of Rice. ALGOCLOUD 2023: 1-8 - [c30]Vincent Cohen-Addad, David Saulpic, Chris Schwiegelshohn:
Deterministic Clustering in High Dimensional Spaces: Sketches and Approximation. FOCS 2023: 1105-1130 - [c29]Maria Sofia Bucarelli, Matilde Fjeldsø Larsen, Chris Schwiegelshohn, Mads Toftrup:
On Generalization Bounds for Projective Clustering. NeurIPS 2023 - [c28]Vincent Cohen-Addad, Fabrizio Grandoni, Euiwoong Lee, Chris Schwiegelshohn:
Breaching the 2 LMP Approximation Barrier for Facility Location with Applications to k-Median. SODA 2023: 940-986 - [i24]Mikael Høgsgaard, Panagiotis Karras, Wenyue Ma, Nidhi Rathi, Chris Schwiegelshohn:
Optimally Interpolating between Ex-Ante Fairness and Welfare. CoRR abs/2302.03071 (2023) - [i23]Mikael Møller Høgsgaard, Lior Kamma, Kasper Green Larsen, Jelani Nelson, Chris Schwiegelshohn:
Sparse Dimensionality Reduction Revisited. CoRR abs/2302.06165 (2023) - [i22]Tung Mai, Alexander Munteanu, Cameron Musco, Anup B. Rao, Chris Schwiegelshohn, David P. Woodruff:
Optimal Sketching Bounds for Sparse Linear Regression. CoRR abs/2304.02261 (2023) - [i21]Vincent Cohen-Addad, David Saulpic, Chris Schwiegelshohn:
Deterministic Clustering in High Dimensional Spaces: Sketches and Approximation. CoRR abs/2310.04076 (2023) - [i20]Maria Sofia Bucarelli, Matilde Fjeldsø Larsen, Chris Schwiegelshohn, Mads Bech Toftrup:
On Generalization Bounds for Projective Clustering. CoRR abs/2310.09127 (2023) - [i19]Chandra Chekuri, Aleksander Bjørn Grodt Christiansen, Jacob Holm, Ivor van der Hoog, Kent Quanrud, Eva Rotenberg, Chris Schwiegelshohn:
Adaptive Out-Orientations with Applications. CoRR abs/2310.18146 (2023) - 2022
- [c27]Chris Schwiegelshohn, Omar Ali Sheikh-Omar:
An Empirical Evaluation of k-Means Coresets. ESA 2022: 84:1-84:17 - [c26]Vladimir Braverman, Vincent Cohen-Addad, Shaofeng H.-C. Jiang, Robert Krauthgamer, Chris Schwiegelshohn, Mads Bech Toftrup, Xuan Wu:
The Power of Uniform Sampling for Coresets. FOCS 2022: 462-473 - [c25]Vincent Cohen-Addad, Alessandro Epasto, Silvio Lattanzi, Vahab Mirrokni, Andres Muñoz Medina, David Saulpic, Chris Schwiegelshohn, Sergei Vassilvitskii:
Scalable Differentially Private Clustering via Hierarchically Separated Trees. KDD 2022: 221-230 - [c24]Vincent Cohen-Addad, Kasper Green Larsen, David Saulpic, Chris Schwiegelshohn, Omar Ali Sheikh-Omar:
Improved Coresets for Euclidean k-Means. NeurIPS 2022 - [c23]Fabrizio Grandoni, Chris Schwiegelshohn, Shay Solomon, Amitai Uzrad:
Maintaining an EDCS in General Graphs: Simpler, Density-Sensitive and with Worst-Case Time Bounds. SOSA 2022: 12-23 - [c22]Vincent Cohen-Addad, Kasper Green Larsen, David Saulpic, Chris Schwiegelshohn:
Towards optimal lower bounds for k-median and k-means coresets. STOC 2022: 1038-1051 - [i18]Vincent Cohen-Addad, Kasper Green Larsen, David Saulpic, Chris Schwiegelshohn:
Towards Optimal Lower Bounds for k-median and k-means Coresets. CoRR abs/2202.12793 (2022) - [i17]Vincent Cohen-Addad, Alessandro Epasto, Silvio Lattanzi, Vahab S. Mirrokni, Andres Muñoz Medina, David Saulpic, Chris Schwiegelshohn, Sergei Vassilvitskii:
Scalable Differentially Private Clustering via Hierarchically Separated Trees. CoRR abs/2206.08646 (2022) - [i16]Chris Schwiegelshohn, Omar Ali Sheikh-Omar:
An Empirical Evaluation of k-Means Coresets. CoRR abs/2207.00966 (2022) - [i15]Vincent Cohen-Addad, Fabrizio Grandoni, Euiwoong Lee, Chris Schwiegelshohn:
Breaching the 2 LMP Approximation Barrier for Facility Location with Applications to k-Median. CoRR abs/2207.05150 (2022) - [i14]Vladimir Braverman, Vincent Cohen-Addad, Shaofeng H.-C. Jiang, Robert Krauthgamer, Chris Schwiegelshohn, Mads Bech Toftrup, Xuan Wu:
The Power of Uniform Sampling for Coresets. CoRR abs/2209.01901 (2022) - [i13]Aleksander B. G. Christiansen, Jacob Holm, Ivor van der Hoog, Eva Rotenberg, Chris Schwiegelshohn:
Adaptive Out-Orientations with Applications. CoRR abs/2209.14087 (2022) - [i12]Vincent Cohen-Addad, Kasper Green Larsen, David Saulpic, Chris Schwiegelshohn, Omar Ali Sheikh-Omar:
Improved Coresets for Euclidean k-Means. CoRR abs/2211.08184 (2022) - 2021
- [j5]Marc Bury, Michele Gentili, Chris Schwiegelshohn, Mara Sorella:
Polynomial Time Approximation Schemes for All 1-Center Problems on Metric Rational Set Similarities. Algorithmica 83(5): 1371-1392 (2021) - [j4]Matteo Böhm, Adriano Fazzone, Stefano Leonardi, Cristina Menghini, Chris Schwiegelshohn:
Algorithms for fair k-clustering with multiple protected attributes. Oper. Res. Lett. 49(5): 787-789 (2021) - [c21]Vincent Cohen-Addad, David Saulpic, Chris Schwiegelshohn:
Improved Coresets and Sublinear Algorithms for Power Means in Euclidean Spaces. NeurIPS 2021: 21085-21098 - [c20]Vincent Cohen-Addad, David Saulpic, Chris Schwiegelshohn:
A new coreset framework for clustering. STOC 2021: 169-182 - [i11]Vincent Cohen-Addad, David Saulpic, Chris Schwiegelshohn:
A New Coreset Framework for Clustering. CoRR abs/2104.06133 (2021) - [i10]Fabrizio Grandoni, Chris Schwiegelshohn, Shay Solomon, Amitai Uzrad:
Maintaining an EDCS in General Graphs: Simpler, Density-Sensitive and with Worst-Case Time Bounds. CoRR abs/2108.08825 (2021) - 2020
- [j3]Marc Bury, Chris Schwiegelshohn, Mara Sorella:
Similarity Search for Dynamic Data Streams. IEEE Trans. Knowl. Data Eng. 32(11): 2241-2253 (2020) - [c19]Aris Anagnostopoulos, Luca Becchetti, Adriano Fazzone, Cristina Menghini, Chris Schwiegelshohn:
Spectral Relaxations and Fair Densest Subgraphs. CIKM 2020: 35-44 - [c18]Samin Jamalabadi, Chris Schwiegelshohn, Uwe Schwiegelshohn:
Commitment and Slack for Online Load Maximization. SPAA 2020: 339-348 - [i9]Matteo Böhm, Adriano Fazzone, Stefano Leonardi, Chris Schwiegelshohn:
Fair Clustering with Multiple Colors. CoRR abs/2002.07892 (2020) - [i8]Giorgio Barnabò, Adriano Fazzone, Stefano Leonardi, Chris Schwiegelshohn:
Algorithms for Fair Team Formation in Online Labour Marketplaces. CoRR abs/2002.11621 (2020)
2010 – 2019
- 2019
- [j2]Marc Bury, Elena Grigorescu, Andrew McGregor, Morteza Monemizadeh, Chris Schwiegelshohn, Sofya Vorotnikova, Samson Zhou:
Structural Results on Matching Estimation with Applications to Streaming. Algorithmica 81(1): 367-392 (2019) - [c17]Alexander Munteanu, Chris Schwiegelshohn, Christian Sohler, David P. Woodruff:
On Coresets for Logistic Regression. GI-Jahrestagung 2019: 267-268 - [c16]Vincent Cohen-Addad, Niklas Hjuler, Nikos Parotsidis, David Saulpic, Chris Schwiegelshohn:
Fully Dynamic Consistent Facility Location. NeurIPS 2019: 3250-3260 - [c15]Fabrizio Grandoni, Stefano Leonardi, Piotr Sankowski, Chris Schwiegelshohn, Shay Solomon:
(1 + ε)-Approximate Incremental Matching in Constant Deterministic Amortized Time. SODA 2019: 1886-1898 - [c14]Luca Becchetti, Marc Bury, Vincent Cohen-Addad, Fabrizio Grandoni, Chris Schwiegelshohn:
Oblivious dimension reduction for k-means: beyond subspaces and the Johnson-Lindenstrauss lemma. STOC 2019: 1039-1050 - [c13]Melanie Schmidt, Chris Schwiegelshohn, Christian Sohler:
Fair Coresets and Streaming Algorithms for Fair k-means. WAOA 2019: 232-251 - [c12]Giorgio Barnabò, Adriano Fazzone, Stefano Leonardi, Chris Schwiegelshohn:
Algorithms for Fair Team Formation in Online Labour Marketplaces✱. WWW (Companion Volume) 2019: 484-490 - [i7]Chris Schwiegelshohn, Uwe Schwiegelshohn:
Maximizing Online Utilization with Commitment. CoRR abs/1904.06150 (2019) - [i6]Aris Anagnostopoulos, Luca Becchetti, Matteo Böhm, Adriano Fazzone, Stefano Leonardi, Cristina Menghini, Chris Schwiegelshohn:
Principal Fairness: \\ Removing Bias via Projections. CoRR abs/1905.13651 (2019) - 2018
- [j1]Alexander Munteanu, Chris Schwiegelshohn:
Coresets-Methods and History: A Theoreticians Design Pattern for Approximation and Streaming Algorithms. Künstliche Intell. 32(1): 37-53 (2018) - [c11]Aris Anagnostopoulos, Fabio Angeletti, Federico Arcangeli, Chris Schwiegelshohn, Andrea Vitaletti:
Random Projection to Preserve Patient Privacy. CIKM Workshops 2018 - [c10]Alexander Munteanu, Chris Schwiegelshohn, Christian Sohler, David P. Woodruff:
On Coresets for Logistic Regression. NeurIPS 2018: 6562-6571 - [c9]Marc Bury, Chris Schwiegelshohn, Mara Sorella:
Sketch 'Em All: Fast Approximate Similarity Search for Dynamic Data Streams. WSDM 2018: 72-80 - [i5]Alexander Munteanu, Chris Schwiegelshohn, Christian Sohler, David P. Woodruff:
On Coresets for Logistic Regression. CoRR abs/1805.08571 (2018) - [i4]Melanie Schmidt, Chris Schwiegelshohn, Christian Sohler:
Fair Coresets and Streaming Algorithms for Fair k-Means Clustering. CoRR abs/1812.10854 (2018) - 2017
- [b1]Chris Schwiegelshohn:
On algorithms for large-scale graph and clustering problems. Dortmund University, Germany, 2017 - [c8]Vincent Cohen-Addad, Chris Schwiegelshohn:
On the Local Structure of Stable Clustering Instances. FOCS 2017: 49-60 - [c7]Marc Bury, Chris Schwiegelshohn:
On Finding the Jaccard Center. ICALP 2017: 23:1-23:14 - [p1]Chris Schwiegelshohn:
Algorithmen für datenintensive Graph- und Clusteringprobleme. Ausgezeichnete Informatikdissertationen 2017: 231-240 - [i3]Vincent Cohen-Addad, Chris Schwiegelshohn:
One Size Fits All : Effectiveness of Local Search on Structured Data. CoRR abs/1701.08423 (2017) - 2016
- [c6]Chris Schwiegelshohn, Uwe Schwiegelshohn:
The Power of Migration for Online Slack Scheduling. ESA 2016: 75:1-75:17 - [c5]Vincent Cohen-Addad, Chris Schwiegelshohn, Christian Sohler:
Diameter and k-Center in Sliding Windows. ICALP 2016: 19:1-19:12 - [i2]Marc Bury, Chris Schwiegelshohn:
Efficient Similarity Search in Dynamic Data Streams. CoRR abs/1605.03949 (2016) - 2015
- [c4]Marc Bury, Chris Schwiegelshohn:
Sublinear Estimation of Weighted Matchings in Dynamic Data Streams. ESA 2015: 263-274 - [i1]Marc Bury, Chris Schwiegelshohn:
Sublinear Estimation of Weighted Matchings in Dynamic Data Streams. CoRR abs/1505.02019 (2015) - 2013
- [c3]Hendrik Fichtenberger, Marc Gillé, Melanie Schmidt, Chris Schwiegelshohn, Christian Sohler:
BICO: BIRCH Meets Coresets for k-Means Clustering. ESA 2013: 481-492 - 2012
- [c2]Stefan Canzar, Tobias Marschall, Sven Rahmann, Chris Schwiegelshohn:
Solving the Minimum String Cover Problem. ALENEX 2012: 75-83
2000 – 2009
- 2009
- [c1]Hendrik Blom, Christiane Küch, Katja Losemann, Chris Schwiegelshohn:
PEPPA: a project for evolutionary predator prey algorithms. GECCO (Companion) 2009: 1993-1998
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2025-01-20 22:53 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint