default search action
Davide Anguita
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j69]Luca Oneto, Sandro Ridella, Davide Anguita:
Towards algorithms and models that we can trust: A theoretical perspective. Neurocomputing 592: 127798 (2024) - [j68]Giovanni Donghi, Luca Pasa, Luca Oneto, Claudio Gallicchio, Alessio Micheli, Davide Anguita, Alessandro Sperduti, Nicolò Navarin:
Investigating over-parameterized randomized graph networks. Neurocomputing 606: 128281 (2024) - [c101]Luca Oneto, Davide Anguita, Sandro Ridella:
Informed Machine Learning: Excess Risk and Generalization. ESANN 2024 - [c100]Luca Oneto, Nicolò Navarin, Alessio Micheli, Luca Pasa, Claudio Gallicchio, Davide Bacciu, Davide Anguita:
Informed Machine Learning for Complex Data. ESANN 2024 - [i1]Daniele Angioni, Luca Demetrio, Maura Pintor, Luca Oneto, Davide Anguita, Battista Biggio, Fabio Roli:
Robustness-Congruent Adversarial Training for Secure Machine Learning Model Updates. CoRR abs/2402.17390 (2024) - 2023
- [b1]Giuliano Donzellini, Luca Oneto, Domenico Ponta, Davide Anguita:
Introduzione al Progetto di Sistemi Digitali, 2a Edition. Springer 2023, ISBN 978-88-470-4025-0, pp. 1-572 - [j67]Luca Oneto, Sandro Ridella, Davide Anguita:
Do we really need a new theory to understand over-parameterization? Neurocomputing 543: 126227 (2023) - [j66]Olga Valenzuela, Andreu Català, Davide Anguita, Ignacio Rojas:
New Advances in Artificial Neural Networks and Machine Learning Techniques. Neural Process. Lett. 55(5): 5269-5272 (2023) - [c99]Danilo Franco, Luca Oneto, Davide Anguita:
Mitigating Robustness Bias: Theoretical Results and Empirical Evidences. ESANN 2023 - [c98]Luca Oneto, Sandro Ridella, Davide Anguita:
Towards Randomized Algorithms and Models that We Can Trust: a Theoretical Perspective. ESANN 2023 - [c97]Danilo Franco, Luca Oneto, Davide Anguita:
Fair Empirical Risk Minimization Revised. IWANN (1) 2023: 29-42 - [c96]Guido Parodi, Luca Oneto, Giulio Ferro, Stefano Zampini, Michela Robba, Davide Anguita, Andrea Coraddu:
Physics Informed Data Driven Techniques for Power Flow Analysis. SSCI 2023: 33-40 - 2022
- [j65]Danilo Franco, Nicolò Navarin, Michele Donini, Davide Anguita, Luca Oneto:
Deep fair models for complex data: Graphs labeling and explainable face recognition. Neurocomputing 470: 318-334 (2022) - [j64]Luca Oneto, Sandro Ridella, Davide Anguita:
The benefits of adversarial defense in generalization. Neurocomputing 505: 125-141 (2022) - [j63]Miltiadis Kalikatzarakis, Andrea Coraddu, Luca Oneto, Davide Anguita:
Optimizing Fuel Consumption in Thrust Allocation for Marine Dynamic Positioning Systems. IEEE Trans Autom. Sci. Eng. 19(1): 122-142 (2022) - [c95]Luca Oneto, Simone Minisi, Andrea Garrone, Renzo Canepa, Carlo Dambra, Davide Anguita:
Simple Non Regressive Informed Machine Learning Model for Predictive Maintenance of Railway Critical Assets. ESANN 2022 - [c94]Luca Oneto, Sandro Ridella, Davide Anguita:
Do We Really Need a New Theory to Understand the Double-Descent? ESANN 2022 - [c93]Vincenzo Stefano D'Amato, Luca Oneto, Antonio Camurri, Davide Anguita:
The Importance of Multiple Temporal Scales in Motion Recognition: when Shallow Model can Support Deep Multi Scale Models. IJCNN 2022: 1-10 - [c92]Vincenzo Stefano D'Amato, Luca Oneto, Antonio Camurri, Davide Anguita, Zinat Zarandi, Luciano Fadiga, Alessandro D'Ausilio, Thierry Pozzo:
The Importance of Multiple Temporal Scales in Motion Recognition: from Shallow to Deep Multi Scale Models. IJCNN 2022: 1-9 - [c91]Andrea Garrone, Simone Minisi, Luca Oneto, Carlo Dambra, Marco Borinato, Paolo Sanetti, Giulia Vignola, Federico Papa, Nadia Mazzino, Davide Anguita:
Simple Non Regressive Informed Machine Learning Model for Prescriptive Maintenance of Track Circuits in a Subway Environment. SYSINT 2022: 74-83 - 2021
- [j62]Danilo Franco, Luca Oneto, Nicolò Navarin, Davide Anguita:
Toward Learning Trustworthily from Data Combining Privacy, Fairness, and Explainability: An Application to Face Recognition. Entropy 23(8): 1047 (2021) - [c90]Vincenzo Stefano D'Amato, Luca Oneto, Antonio Camurri, Davide Anguita:
Keep it Simple: Handcrafting Feature and Tuning Random Forests and XGBoost to face the Affective Movement Recognition Challenge 2021. ACII (Workshops and Demos) 2021: 1-7 - [c89]Gianluca Boleto, Luca Oneto, Matteo Cardellini, Marco Maratea, Mauro Vallati, Renzo Canepa, Davide Anguita:
In-Station Train Movements Prediction: from Shallow to Deep Multi Scale Models. ESANN 2021 - [c88]Luca Oneto, Sandro Ridella, Davide Anguita:
The Benefits of Adversarial Defence in Generalisation. ESANN 2021 - [c87]Danilo Franco, Luca Oneto, Nicolò Navarin, Davide Anguita:
Learn and Visually Explain Deep Fair Models: an Application to Face Recognition. IJCNN 2021: 1-10 - [c86]Vincenzo Stefano D'Amato, Erica Volta, Luca Oneto, Gualtiero Volpe, Antonio Camurri, Davide Anguita:
Accuracy and Intrusiveness in Data-Driven Violin Players Skill Levels Prediction: MOCAP Against MYO Against KINECT. IWANN (2) 2021: 367-379 - 2020
- [j61]Cecilio Angulo, Zoe Falomir, Davide Anguita, Núria Agell, Erik Cambria:
Bridging Cognitive Models and Recommender Systems. Cogn. Comput. 12(2): 426-427 (2020) - [j60]Vincenzo Stefano D'Amato, Erica Volta, Luca Oneto, Gualtiero Volpe, Antonio Camurri, Davide Anguita:
Understanding Violin Players' Skill Level Based on Motion Capture: a Data-Driven Perspective. Cogn. Comput. 12(6): 1356-1369 (2020) - [j59]Luca Oneto, Irene Buselli, Alessandro Lulli, Renzo Canepa, Simone Petralli, Davide Anguita:
A dynamic, interpretable, and robust hybrid data analytics system for train movements in large-scale railway networks. Int. J. Data Sci. Anal. 9(1): 95-111 (2020) - [j58]Joaquín Luque, Davide Anguita, Francisco Pérez, Robert Denda:
Spectral Analysis of Electricity Demand Using Hilbert-Huang Transform. Sensors 20(10): 2912 (2020) - [c85]Luca Oneto, Sandro Ridella, Davide Anguita:
Improving the Union Bound: a Distribution Dependent Approach. ESANN 2020: 423-428 - [e2]Luca Oneto, Nicolò Navarin, Alessandro Sperduti, Davide Anguita:
Recent Advances in Big Data and Deep Learning, Proceedings of the INNS Big Data and Deep Learning Conference INNSBDDL 2019, held at Sestri Levante, Genova, Italy 16-18 April 2019. Springer 2020, ISBN 978-3-030-16840-7 [contents] - [e1]Luca Oneto, Nicolò Navarin, Alessandro Sperduti, Davide Anguita:
Recent Trends in Learning From Data - Tutorials from the INNS Big Data and Deep Learning Conference (INNSBDDL 2019). Studies in Computational Intelligence 896, Springer 2020, ISBN 978-3-030-43882-1 [contents]
2010 – 2019
- 2019
- [j57]Alessandro Lulli, Luca Oneto, Davide Anguita:
Mining Big Data with Random Forests. Cogn. Comput. 11(2): 294-316 (2019) - [j56]Luca Oneto, Sandro Ridella, Davide Anguita:
Local Rademacher Complexity Machine. Neurocomputing 342: 24-32 (2019) - [c84]Luca Oneto, Nicolò Navarin, Alessandro Sperduti, Davide Anguita:
Introduction. INNSBDDL (Tutorials) 2019: 1-4 - [c83]Roberto Spigolon, Luca Oneto, Dimitar Anastasovski, Nadia Fabrizio, Marie Swiatek, Renzo Canepa, Davide Anguita:
Improving Railway Maintenance Actions with Big Data and Distributed Ledger Technologies. INNSBDDL 2019: 120-125 - [c82]Luca Oneto, Irene Buselli, Paolo Sanetti, Renzo Canepa, Simone Petralli, Davide Anguita:
Restoration Time Prediction in Large Scale Railway Networks: Big Data and Interpretability. INNSBDDL 2019: 136-141 - [c81]Luca Oneto, Irene Buselli, Alessandro Lulli, Renzo Canepa, Simone Petralli, Davide Anguita:
Train Overtaking Prediction in Railway Networks: A Big Data Perspective. INNSBDDL 2019: 142-151 - [c80]Francesca Cipollini, Fabiana Miglianti, Luca Oneto, Giorgio Tani, Michele Viviani, Davide Anguita:
Cavitation Noise Spectra Prediction with Hybrid Models. INNSBDDL 2019: 152-157 - [c79]Udo Schlegel, Wolfgang Jentner, Juri Buchmüller, Eren Cakmak, Giuliano Castiglia, Renzo Canepa, Simone Petralli, Luca Oneto, Daniel A. Keim, Davide Anguita:
Visual Analytics for Supporting Conflict Resolution in Large Railway Networks. INNSBDDL 2019: 206-215 - [c78]Alice Consilvio, Paolo Sanetti, Davide Anguita, Carlo Crovetto, Carlo Dambra, Luca Oneto, Federico Papa, Nicola Sacco:
Prescriptive Maintenance of Railway Infrastructure: From Data Analytics to Decision Support. MT-ITS 2019: 1-10 - 2018
- [j55]Luca Oneto, Emanuele Fumeo, Giorgio Clerico, Renzo Canepa, Federico Papa, Carlo Dambra, Nadia Mazzino, Davide Anguita:
Train Delay Prediction Systems: A Big Data Analytics Perspective. Big Data Res. 11: 54-64 (2018) - [j54]Luca Oneto, Francesca Cipollini, Sandro Ridella, Davide Anguita:
Randomized learning: Generalization performance of old and new theoretically grounded algorithms. Neurocomputing 298: 21-33 (2018) - [j53]Luca Oneto, Nicolò Navarin, Alessandro Sperduti, Davide Anguita:
Multilayer Graph Node Kernels: Stacking While Maintaining Convexity. Neural Process. Lett. 48(2): 649-667 (2018) - [j52]Francesca Cipollini, Luca Oneto, Andrea Coraddu, Alan John Murphy, Davide Anguita:
Condition-based maintenance of naval propulsion systems: Data analysis with minimal feedback. Reliab. Eng. Syst. Saf. 177: 12-23 (2018) - [j51]Luca Oneto, Federica Laureri, Michela Robba, Federico Delfino, Davide Anguita:
Data-Driven Photovoltaic Power Production Nowcasting and Forecasting for Polygeneration Microgrids. IEEE Syst. J. 12(3): 2842-2853 (2018) - [j50]Luca Oneto, Nicolò Navarin, Michele Donini, Sandro Ridella, Alessandro Sperduti, Fabio Aiolli, Davide Anguita:
Learning With Kernels: A Local Rademacher Complexity-Based Analysis With Application to Graph Kernels. IEEE Trans. Neural Networks Learn. Syst. 29(10): 4660-4671 (2018) - [c77]Alessandro Lulli, Luca Oneto, Renzo Canepa, Simone Petralli, Davide Anguita:
Large-Scale Railway Networks Train Movements: A Dynamic, Interpretable, and Robust Hybrid Data Analytics System. DSAA 2018: 371-380 - [c76]Luca Oneto, Nicolò Navarin, Michele Donini, Davide Anguita:
Emerging trends in machine learning: beyond conventional methods and data. ESANN 2018 - [c75]Luca Oneto, Sandro Ridella, Davide Anguita:
Local Rademacher Complexity Machine. ESANN 2018 - [c74]Francesca Cipollini, Luca Oneto, Andrea Coraddu, Stefano Savio, Davide Anguita:
Unintrusive Monitoring of Induction Motors Bearings via Deep Learning on Stator Currents. INNS Conference on Big Data 2018: 42-51 - 2017
- [j49]Luca Oneto, Federica Bisio, Erik Cambria, Davide Anguita:
Semi-supervised Learning for Affective Common-Sense Reasoning. Cogn. Comput. 9(1): 18-42 (2017) - [j48]Luca Oneto, Federica Bisio, Erik Cambria, Davide Anguita:
SLT-Based ELM for Big Social Data Analysis. Cogn. Comput. 9(2): 259-274 (2017) - [j47]Luca Oneto, Nicolò Navarin, Michele Donini, Alessandro Sperduti, Fabio Aiolli, Davide Anguita:
Measuring the expressivity of graph kernels through Statistical Learning Theory. Neurocomputing 268: 4-16 (2017) - [j46]Luca Oneto, Sandro Ridella, Davide Anguita:
Differential privacy and generalization: Sharper bounds with applications. Pattern Recognit. Lett. 89: 31-38 (2017) - [j45]Isah Abdullahi Lawal, Fabio Poiesi, Davide Anguita, Andrea Cavallaro:
Support Vector Motion Clustering. IEEE Trans. Circuits Syst. Video Technol. 27(11): 2395-2408 (2017) - [j44]Luca Oneto, Emanuele Fumeo, Giorgio Clerico, Renzo Canepa, Federico Papa, Carlo Dambra, Nadia Mazzino, Davide Anguita:
Dynamic Delay Predictions for Large-Scale Railway Networks: Deep and Shallow Extreme Learning Machines Tuned via Thresholdout. IEEE Trans. Syst. Man Cybern. Syst. 47(10): 2754-2767 (2017) - [c73]Alessandro Lulli, Luca Oneto, Davide Anguita:
Crack random forest for arbitrary large datasets. IEEE BigData 2017: 706-715 - [c72]Luca Oneto, Sandro Ridella, Davide Anguita:
Generalization Performances of Randomized Classifiers and Algorithms built on Data Dependent Distributions. ESANN 2017 - [c71]Luca Oneto, Anna Siri, Gianvittorio Luria, Davide Anguita:
Dropout Prediction at University of Genoa: a Privacy Preserving Data Driven Approach. ESANN 2017 - [c70]Alessandro Lulli, Luca Oneto, Davide Anguita:
ReForeSt: Random Forests in Apache Spark. ICANN (2) 2017: 331-339 - [c69]Luca Oneto, Andrea Coraddu, Paolo Sanetti, Olena Karpenko, Francesca Cipollini, Toine Cleophas, Davide Anguita:
Marine Safety and Data Analytics: Vessel Crash Stop Maneuvering Performance Prediction. ICANN (2) 2017: 385-393 - [c68]Luca Oneto, Nicolò Navarin, Alessandro Sperduti, Davide Anguita:
Deep graph node kernels: A convex approach. IJCNN 2017: 316-323 - 2016
- [j43]Luca Oneto, Federica Bisio, Erik Cambria, Davide Anguita:
Statistical Learning Theory and ELM for Big Social Data Analysis. IEEE Comput. Intell. Mag. 11(3): 45-55 (2016) - [j42]Jorge Luis Reyes-Ortiz, Luca Oneto, Albert Samà, Xavier Parra, Davide Anguita:
Transition-Aware Human Activity Recognition Using Smartphones. Neurocomputing 171: 754-767 (2016) - [j41]Mehrnoosh Vahdat, Luca Oneto, Davide Anguita, Mathias Funk, Matthias Rauterberg:
Can machine learning explain human learning? Neurocomputing 192: 14-28 (2016) - [j40]Luca Oneto, Sandro Ridella, Davide Anguita:
Tikhonov, Ivanov and Morozov regularization for support vector machine learning. Mach. Learn. 103(1): 103-136 (2016) - [j39]Luca Oneto, Davide Anguita, Sandro Ridella:
A local Vapnik-Chervonenkis complexity. Neural Networks 82: 62-75 (2016) - [j38]Luca Oneto, Alessandro Ghio, Sandro Ridella, Davide Anguita:
Global Rademacher Complexity Bounds: From Slow to Fast Convergence Rates. Neural Process. Lett. 43(2): 567-602 (2016) - [j37]Luca Oneto, Davide Anguita, Sandro Ridella:
PAC-bayesian analysis of distribution dependent priors: Tighter risk bounds and stability analysis. Pattern Recognit. Lett. 80: 200-207 (2016) - [j36]Luca Oneto, Sandro Ridella, Davide Anguita:
Learning Hardware-Friendly Classifiers Through Algorithmic Stability. ACM Trans. Embed. Comput. Syst. 15(2): 23:1-23:29 (2016) - [c67]Luca Oneto, Emanuele Fumeo, Giorgio Clerico, Renzo Canepa, Federico Papa, Carlo Dambra, Nadia Mazzino, Davide Anguita:
Advanced Analytics for Train Delay Prediction Systems by Including Exogenous Weather Data. DSAA 2016: 458-467 - [c66]Mehrnoosh Vahdat, Maira B. Carvalho, Mathias Funk, Matthias Rauterberg, Jun Hu, Davide Anguita:
Learning Analytics for a Puzzle Game to Discover the Puzzle-Solving Tactics of Players. EC-TEL 2016: 673-677 - [c65]Luca Oneto, Nicolò Navarin, Michele Donini, Fabio Aiolli, Davide Anguita:
Advances in Learning with Kernels: Theory and Practice in a World of growing Constraints. ESANN 2016 - [c64]Luca Oneto, Nicolò Navarin, Michele Donini, Alessandro Sperduti, Fabio Aiolli, Davide Anguita:
Measuring the Expressivity of Graph Kernels through the Rademacher Complexity. ESANN 2016 - [c63]Luca Oneto, Sandro Ridella, Davide Anguita:
Tuning the Distribution Dependent Prior in the PAC-Bayes Framework based on Empirical Data. ESANN 2016 - [c62]Ilenia Orlandi, Luca Oneto, Davide Anguita:
Random Forests Model Selection. ESANN 2016 - [c61]Luca Oneto, Emanuele Fumeo, Giorgio Clerico, Renzo Canepa, Federico Papa, Carlo Dambra, Nadia Mazzino, Davide Anguita:
Delay Prediction System for Large-Scale Railway Networks Based on Big Data Analytics. INNS Conference on Big Data 2016: 139-150 - [c60]Luca Oneto, Davide Anguita, Andrea Coraddu, Toine Cleophas, Katerina Xepapa:
Vessel monitoring and design in industry 4.0: A data driven perspective. RTSI 2016: 1-6 - [p1]Luca Oneto, Davide Anguita:
Learning Hardware Friendly Classifiers Through Algorithmic Risk Minimization. Advances in Neural Networks 2016: 403-413 - 2015
- [j35]Luca Oneto, Alessandro Ghio, Sandro Ridella, Davide Anguita:
Learning Resource-Aware Classifiers for Mobile Devices: From Regularization to Energy Efficiency. Neurocomputing 169: 225-235 (2015) - [j34]Luca Oneto, Alessandro Ghio, Sandro Ridella, Davide Anguita:
Local Rademacher Complexity: Sharper risk bounds with and without unlabeled samples. Neural Networks 65: 115-125 (2015) - [j33]Luca Oneto, Alessandro Ghio, Sandro Ridella, Davide Anguita:
Fully Empirical and Data-Dependent Stability-Based Bounds. IEEE Trans. Cybern. 45(9): 1913-1926 (2015) - [c59]Luca Oneto, Ilenia Orlandi, Davide Anguita:
Performance assessment and uncertainty quantification of predictive models for smart manufacturing systems. IEEE BigData 2015: 1436-1445 - [c58]Mehrnoosh Vahdat, Luca Oneto, Davide Anguita, Mathias Funk, Matthias Rauterberg:
A Learning Analytics Approach to Correlate the Academic Achievements of Students with Interaction Data from an Educational Simulator. EC-TEL 2015: 352-366 - [c57]Luca Oneto, Bernardo Pilarz, Alessandro Ghio, Davide Anguita:
Model Selection for Big Data: Algorithmic Stability and Bag of Little Bootstraps on GPUs. ESANN 2015 - [c56]Mehrnoosh Vahdat, Alessandro Ghio, Luca Oneto, Davide Anguita, Mathias Funk, Matthias Rauterberg:
Advances in learning analytics and educational data mining. ESANN 2015 - [c55]Mehrnoosh Vahdat, Luca Oneto, Alessandro Ghio, Davide Anguita, Mathias Funk, Matthias Rauterberg:
Human Algorithmic Stability and Human Rademacher Complexity. ESANN 2015 - [c54]Luca Oneto, Alessandro Ghio, Sandro Ridella, Davide Anguita:
Shrinkage learning to improve SVM with hints. IJCNN 2015: 1-9 - [c53]Luca Oneto, Alessandro Ghio, Sandro Ridella, Davide Anguita:
Support vector machines and strictly positive definite kernel: The regularization hyperparameter is more important than the kernel hyperparameters. IJCNN 2015: 1-4 - [c52]Luca Oneto, Alessandro Ghio, Sandro Ridella, Davide Anguita:
Fast convergence of extended Rademacher Complexity bounds. IJCNN 2015: 1-10 - [c51]Jorge Luis Reyes-Ortiz, Luca Oneto, Davide Anguita:
Big Data Analytics in the Cloud: Spark on Hadoop vs MPI/OpenMP on Beowulf. INNS Conference on Big Data 2015: 121-130 - [c50]Emanuele Fumeo, Luca Oneto, Davide Anguita:
Condition Based Maintenance in Railway Transportation Systems Based on Big Data Streaming Analysis. INNS Conference on Big Data 2015: 437-446 - [d4]Jorge Luis Reyes-Ortiz, Davide Anguita, Luca Oneto, Xavier Parra:
Smartphone-Based Recognition of Human Activities and Postural Transitions. UCI Machine Learning Repository, 2015 - [d3]Mehrnoosh Vahdat, Luca Oneto, Davide Anguita, Mathias Funk, Matthias Rauterberg:
Educational Process Mining (EPM): A Learning Analytics Data Set. UCI Machine Learning Repository, 2015 - 2014
- [j32]Davide Anguita, Alessandro Ghio, Luca Oneto, Sandro Ridella:
Unlabeled patterns to tighten Rademacher complexity error bounds for kernel classifiers. Pattern Recognit. Lett. 37: 210-219 (2014) - [j31]Davide Anguita, Alessandro Ghio, Luca Oneto, Sandro Ridella:
A Deep Connection Between the Vapnik-Chervonenkis Entropy and the Rademacher Complexity. IEEE Trans. Neural Networks Learn. Syst. 25(12): 2202-2211 (2014) - [c49]Mehrnoosh Vahdat, Luca Oneto, Alessandro Ghio, Giuliano Donzellini, Davide Anguita, Mathias Funk, Matthias Rauterberg:
A Learning Analytics Methodology to Profile Students Behavior and Explore Interactions with a Digital Electronics Simulator. EC-TEL 2014: 596-597 - [c48]Davide Anguita, Alessandro Ghio, Luca Oneto, Sandro Ridella:
Learning with few bits on small-scale devices: From regularization to energy efficiency. ESANN 2014 - [c47]Jorge Luis Reyes-Ortiz, Luca Oneto, Alessandro Ghio, Albert Samà, Davide Anguita, Xavier Parra:
Human Activity Recognition on Smartphones with Awareness of Basic Activities and Postural Transitions. ICANN 2014: 177-184 - [c46]Luca Oneto, Alessandro Ghio, Sandro Ridella, Jorge Luis Reyes-Ortiz, Davide Anguita:
Out-of-Sample Error Estimation: The Blessing of High Dimensionality. ICDM Workshops 2014: 637-644 - [c45]Davide Anguita, Alessandro Ghio, Luca Oneto, Sandro Ridella:
Smartphone battery saving by bit-based hypothesis spaces and local Rademacher Complexities. IJCNN 2014: 3916-3921 - [d2]Andrea Coraddu, Luca Oneto, Alessandro Ghio, Stefano Savio, Davide Anguita, Massimo Figari:
Condition Based Maintenance of Naval Propulsion Plants. UCI Machine Learning Repository, 2014 - 2013
- [j30]Davide Anguita, Luca Ghelardoni, Alessandro Ghio, Sandro Ridella:
A Survey of old and New Results for the Test Error Estimation of a Classifier. J. Artif. Intell. Soft Comput. Res. 3(4): 229 (2013) - [j29]Davide Anguita, Alessandro Ghio, Luca Oneto, Xavier Parra, Jorge Luis Reyes-Ortiz:
Energy Efficient Smartphone-Based Activity Recognition using Fixed-Point Arithmetic. J. Univers. Comput. Sci. 19(9): 1295-1314 (2013) - [j28]Luca Oneto, Alessandro Ghio, Davide Anguita, Sandro Ridella:
An improved analysis of the Rademacher data-dependent bound using its self bounding property. Neural Networks 44: 107-111 (2013) - [j27]Luca Ghelardoni, Alessandro Ghio, Davide Anguita:
Energy Load Forecasting Using Empirical Mode Decomposition and Support Vector Regression. IEEE Trans. Smart Grid 4(1): 549-556 (2013) - [c44]Davide Anguita, Alessandro Ghio, Luca Oneto, Xavier Parra, Jorge Luis Reyes-Ortiz:
A Public Domain Dataset for Human Activity Recognition using Smartphones. ESANN 2013 - [c43]Davide Anguita, Alessandro Ghio, Luca Oneto, Sandro Ridella:
A Learning Machine with a Bit-Based Hypothesis Space. ESANN 2013 - [c42]Jorge Luis Reyes-Ortiz, Alessandro Ghio, Xavier Parra, Davide Anguita, Joan Cabestany, Andreu Català:
Human Activity and Motion Disorder Recognition: towards smarter Interactive Cognitive Environments. ESANN 2013 - [c41]Davide Anguita, Alessandro Ghio, Luca Oneto, Xavier Parra, Jorge Luis Reyes-Ortiz:
Training Computationally Efficient Smartphone-Based Human Activity Recognition Models. ICANN 2013: 426-433 - [c40]Davide Anguita, Alessandro Ghio, Luca Oneto, Jorge Luis Reyes-Ortiz, Sandro Ridella:
A Novel Procedure for Training L1-L2 Support Vector Machine Classifiers. ICANN 2013: 434-441 - [c39]Davide Anguita, Alessandro Ghio, Luca Oneto, Sandro Ridella:
Some results about the Vapnik-Chervonenkis entropy and the rademacher complexity. IJCNN 2013: 1-8 - [c38]Davide Anguita, Alessandro Ghio, Luca Oneto, Sandro Ridella:
A support vector machine classifier from a bit-constrained, sparse and localized hypothesis space. IJCNN 2013: 1-10 - 2012
- [j26]Davide Anguita, Alessandro Ghio, Luca Oneto, Sandro Ridella:
In-sample Model Selection for Trimmed Hinge Loss Support Vector Machine. Neural Process. Lett. 36(3): 275-283 (2012) - [j25]Davide Anguita, Alessandro Ghio, Luca Oneto, Sandro Ridella:
In-Sample and Out-of-Sample Model Selection and Error Estimation for Support Vector Machines. IEEE Trans. Neural Networks Learn. Syst. 23(9): 1390-1406 (2012) - [c37]Davide Anguita, Luca Ghelardoni, Alessandro Ghio, Luca Oneto, Sandro Ridella:
The 'K' in K-fold Cross Validation. ESANN 2012 - [c36]Davide Anguita, Alessandro Ghio, Luca Oneto, Sandro Ridella:
Structural Risk Minimization and Rademacher Complexity for Regression. ESANN 2012 - [c35]Alessandro Ghio, Davide Anguita, Luca Oneto, Sandro Ridella, Carlotta Schatten:
Nested Sequential Minimal Optimization for Support Vector Machines. ICANN (2) 2012: 156-163 - [c34]Luca Oneto, Davide Anguita, Alessandro Ghio, Sandro Ridella:
Rademacher Complexity and Structural Risk Minimization: An Application to Human Gene Expression Datasets. ICANN (2) 2012: 491-498 - [c33]Davide Anguita, Alessandro Ghio, Luca Oneto, Xavier Parra, Jorge Luis Reyes-Ortiz:
Human Activity Recognition on Smartphones Using a Multiclass Hardware-Friendly Support Vector Machine. IWAAL 2012: 216-223 - [d1]Jorge Luis Reyes-Ortiz, Davide Anguita, Alessandro Ghio, Luca Oneto, Xavier Parra:
Human Activity Recognition Using Smartphones. UCI Machine Learning Repository, 2012 - 2011
- [j24]Davide Anguita, Alessandro Ghio, Sandro Ridella:
Maximal Discrepancy for Support Vector Machines. Neurocomputing 74(9): 1436-1443 (2011) - [j23]Davide Anguita, Luca Carlino, Alessandro Ghio, Sandro Ridella:
A FPGA Core Generator for Embedded Classification Systems. J. Circuits Syst. Comput. 20(2): 263-282 (2011) - [c32]Davide Anguita, Alessandro Ghio, Luca Oneto, Sandro Ridella:
Maximal Discrepancy vs. Rademacher Complexity for error estimation. ESANN 2011 - [c31]Davide Anguita, Luca Ghelardoni, Alessandro Ghio, Sandro Ridella:
Test error bounds for classifiers: A survey of old and new results. FOCI 2011: 80-87 - [c30]Davide Anguita, Alessandro Ghio, Luca Oneto, Sandro Ridella:
In-sample model selection for Support Vector Machines. IJCNN 2011: 1154-1161 - [c29]Davide Anguita, Alessandro Ghio, Luca Oneto, Sandro Ridella:
Selecting the hypothesis space for improving the generalization ability of Support Vector Machines. IJCNN 2011: 1169-1176 - [c28]Luca Oneto, Davide Anguita, Alessandro Ghio, Sandro Ridella:
The Impact of Unlabeled Patterns in Rademacher Complexity Theory for Kernel Classifiers. NIPS 2011: 585-593 - 2010
- [j22]Sergio Decherchi, Sandro Ridella, Rodolfo Zunino, Paolo Gastaldo, Davide Anguita:
Using unsupervised analysis to constrain generalization bounds for support vector classifiers. IEEE Trans. Neural Networks 21(3): 424-438 (2010) - [c27]Davide Anguita, Alessandro Ghio, Sandro Ridella:
Maximal Discrepancy for Support Vector Machines. ESANN 2010 - [c26]Davide Anguita, Alessandro Ghio, Noemi Greco, Luca Oneto, Sandro Ridella:
Model selection for support vector machines: Advantages and disadvantages of the Machine Learning Theory. IJCNN 2010: 1-8
2000 – 2009
- 2009
- [j21]Bogdan Gabrys, Davide Anguita:
Nature-inspired learning and adaptive systems. Nat. Comput. 8(2): 197-198 (2009) - [c25]Davide Anguita, Alessandro Ghio, Sandro Ridella, Dario Sterpi:
K-Fold Cross Validation for Error Rate Estimate in Support Vector Machines. DMIN 2009: 291-297 - 2008
- [j20]Cecilio Angulo, Davide Anguita, Luis González Abril, Juan Antonio Ortega:
Support vector machines for interval discriminant analysis. Neurocomputing 71(7-9): 1220-1229 (2008) - [j19]Davide Anguita, Alessandro Ghio, Stefano Pischiutta, Sandro Ridella:
A support vector machine with integer parameters. Neurocomputing 72(1-3): 480-489 (2008) - [c24]Davide Anguita, Davide Brizzolara, Alessandro Ghio, Giancarlo Parodi:
Smart plankton - a new generation of underwater wireless sensor network. ALIFE 2008: 745 - [c23]Davide Anguita, Davide Brizzolara, Alessandro Ghio, Giancarlo Parodi:
Smart Plankton: a Nature Inspired Underwater Wireless Sensor Network. ICNC (7) 2008: 701-705 - [c22]Enrique Alba, Davide Anguita, Alessandro Ghio, Sandro Ridella:
Using Variable Neighborhood Search to improve the Support Vector Machine performance in embedded automotive applications. IJCNN 2008: 984-988 - 2007
- [c21]Davide Anguita, Alessandro Ghio, Stefano Pischiutta:
A learning machine for resource-limited adaptive hardware. AHS 2007: 571-576 - [c20]Cecilio Angulo, Davide Anguita, Luis González Abril:
Interval discriminant analysis using support vector machines. ESANN 2007: 223-228 - [c19]Davide Anguita, Alessandro Ghio, Stefano Pischiutta, Sandro Ridella:
A Hardware-friendly Support Vector Machine for Embedded Automotive Applications. IJCNN 2007: 1360-1364 - 2006
- [j18]Davide Anguita, Stefano Pischiutta, Sandro Ridella, Dario Sterpi:
Feed-Forward Support Vector Machine Without Multipliers. IEEE Trans. Neural Networks 17(5): 1328-1331 (2006) - [c18]Davide Anguita, Sandro Ridella, Dario Sterpi:
Testing the Augmented Binary Multiclass SVM on Microarray Data. IJCNN 2006: 1966-1968 - [c17]Davide Anguita, Dario Sterpi:
Nature Inspiration for Support Vector Machines. KES (2) 2006: 442-449 - 2005
- [c16]Davide Anguita, Arianna Poggi, Fabio Rivieccio, Anna Marina Scapolla:
Data Mining Tools: From Web to Grid Architectures. EGC 2005: 620-629 - [c15]Davide Anguita, Giovanni Bozza:
The effect of quantization on support vector machines with Gaussian kernel. IJCNN 2005: 681-684 - [c14]Davide Anguita, Sandro Ridella, Fabio Rivieccio:
K-fold generalization capability assessment for support vector classifiers. IJCNN 2005: 855-858 - 2004
- [j17]Davide Anguita, Iluminada Baturone, Julian Francis Miller:
Special issue on hardware implementations of soft computing techniques. Appl. Soft Comput. 4(3): 204-205 (2004) - [c13]Davide Anguita, Sandro Ridella, Fabio Rivieccio:
An Algorithm for Reducing the Number of Support Vectors. WIRN 2004: 99-105 - 2003
- [j16]Davide Anguita, Sandro Ridella, Fabio Rivieccio, Rodolfo Zunino:
Hyperparameter design criteria for support vector classifiers. Neurocomputing 55(1-2): 109-134 (2003) - [j15]Davide Anguita, Andrea Boni:
Neural network learning for analog VLSI implementations of support vector machines: a survey. Neurocomputing 55(1-2): 265-283 (2003) - [j14]Davide Anguita, Sandro Ridella, Fabio Rivieccio, Rodolfo Zunino:
Quantum optimization for training support vector machines. Neural Networks 16(5-6): 763-770 (2003) - [j13]Davide Anguita, Andrea Boni:
Digital Least Squares Support Vector Machines. Neural Process. Lett. 18(1): 65-72 (2003) - [j12]Davide Anguita, Andrea Boni, Sandro Ridella:
A digital architecture for support vector machines: theory, algorithm, and FPGA implementation. IEEE Trans. Neural Networks 14(5): 993-1009 (2003) - 2002
- [j11]Davide Anguita, Andrea Boni, L. Tagliafico:
SVM performance assessment for the control of injection moulding processes and plasticating extrusion. Int. J. Syst. Sci. 33(9): 723-735 (2002) - [j10]Davide Anguita, Andrea Boni:
Improved neural network for SVM learning. IEEE Trans. Neural Networks 13(5): 1243-1244 (2002) - [c12]Davide Anguita, Matteo Gagliolo:
MDL Based Model Selection for Relevance Vector Regression. ICANN 2002: 468-473 - [c11]Davide Anguita, Sandro Ridella, Fabio Rivieccio, Rodolfo Zunino:
Automatic Hyperparameter Tuning for Support Vector Machines. ICANN 2002: 1345-1350 - 2001
- [c10]Davide Anguita, Maurizio Valle:
Perspectives on dedicated hardware implementations. ESANN 2001: 45-56 - 2000
- [j9]Davide Anguita, Andrea Boni, Sandro Ridella:
Digital VLSI Algorithms and Architectures for Support Vector Machines. Int. J. Neural Syst. 10(3): 159-170 (2000) - [j8]Davide Anguita, Andrea Boni, Giancarlo Parodi:
A case study of a distributed high-performance computing system for neurocomputing. J. Syst. Archit. 46(5): 429-438 (2000) - [j7]Davide Anguita, Andrea Boni, Sandro Ridella:
Evaluating the Generalization Ability of Support Vector Machines through the Bootstrap. Neural Process. Lett. 11(1): 51-58 (2000) - [c9]Davide Anguita, Andrea Boni, Stefano Pace:
Fast Training of Support Vector Machines for Regression. IJCNN (5) 2000: 210-216
1990 – 1999
- 1999
- [j6]Davide Anguita, Sandro Ridella, Stefano Rovetta:
Worst case analysis of weight inaccuracy effects in multilayer perceptrons. IEEE Trans. Neural Networks 10(2): 415-418 (1999) - [c8]Davide Anguita, Andrea Boni, Sandro Ridella:
Support Vector Machines: A Comparison of Some Kernel Functions. IIA/SOCO 1999 - [c7]Davide Anguita, Andrea Boni, Sandro Ridella:
A VLSI friendly algorithm for support vector machines. IJCNN 1999: 939-942 - 1998
- [c6]Davide Anguita, Andrea Boni, Marco Chirico, Fabrizio Giudici, Anna Marina Scapolla, Giancarlo Parodi:
High Performance Neurocomputing: Industrial and Medical Applications of the RAIN System. HPCN Europe 1998: 34-43 - 1997
- [c5]Davide Anguita, Marco Chirico, Anna Marina Scapolla, Giancarlo Parodi:
RAIN: Redundant Array of Inexpensive workstations for Neurocomputing. Euro-Par 1997: 1340-1345 - 1996
- [j5]Davide Anguita, Benedict A. Gomes:
Mixing floating- and fixed-point formats for neural network learning on neuroprocessors. Microprocess. Microprogramming 41(10): 757-769 (1996) - [c4]Davide Anguita, Sandro Ridella, Stefano Rovetta, Rodolfo Zunino:
Limiting the effects of weight errors in feedforward networks using interval arithmetic. ICNN 1996: 414-417 - 1995
- [j4]Davide Anguita, Giancarlo Parodi, Rodolfo Zunino:
Neural structures for visual motion tracking. Mach. Vis. Appl. 8(5): 275-288 (1995) - [j3]Davide Anguita, Vito Di Gesù, Gaetano Gerardi, Biagio Lenzitti, Domenico Tegolo:
A heterogeneous and reconfigurable machine-vision system. Mach. Vis. Appl. 8(5): 343-350 (1995) - [c3]Davide Anguita, Filippo Passaggio, Rodolfo Zunino:
Learning in large neural networks. HPCN Europe 1995: 269-274 - [c2]Jean-Marc Adamo, Davide Anguita:
Object Oriented Design of a Simulator for Large BP Neural Networks. IWANN 1995: 642-649 - 1994
- [j2]Davide Anguita, Giancarlo Parodi, Rodolfo Zunino:
An efficient implementation of BP on RISC-based workstations. Neurocomputing 6(1): 57-65 (1994) - [j1]Davide Anguita, Giancarlo Parodi, Rodolfo Zunino:
Associative structures for vision. Multidimens. Syst. Signal Process. 5(1): 75-96 (1994) - 1991
- [c1]Davide Anguita, Giancarlo Parodi, Domenico Ponta, Rodolfo Zunino:
Transputer-based architectures for associative image classification. SPDP 1991: 241-248
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2025-01-22 20:31 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint