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Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
International Audio Laboratories, Erlangen, Germany

{lopa.schmidt, beran.kilic, nils.peters}@fau.de

ABSTRACT

Acoustic Scene Classification (ASC) is a common task for many
resource-constrained devices, e.g., mobile phones or hearing aids.
Limiting the complexity and memory footprint of the classifier is
crucial. The number of input features directly relates to these two
metrics. In this contribution, we evaluate a feature selection algo-
rithm which we also used in this year’s challenge [1].

We propose binary search with hard constraints on the feature
set and solve the optimization problem with Alternating Direction
Method of Multipliers (ADMM). With minimal impact on accuracy
and log loss, results show the model complexity is halved by mask-
ing 50% of the Mel input features. Further, we found that training
convergence is more stable across random seeds. This also facili-
tates the hyperparameter search. Finally, the remaining Mel features
provide an insight into the properties of the DCASE ASC data set.

Index Terms— ASC, feature selection, hard thresholding

1. INTRODUCTION

An essential part of the training and inference in machine learning
is feature extraction. For Acoustic Scene Classification (ASC), fea-
ture extraction is often combined with domain knowledge to make
features invariant to pitch changes, amplitude differences, and other
modifications [2]. For instance, a Mel-scaled filterbank with addi-
tional log transformation and normalization is commonly used. In
our DCASE 2022 challenge contribution [1], we saw benefits of us-
ing automated features selection to meet the low-complexity model
constraint [3]. Here, we explain and further examine this approach.

Studying features and performing subset selection [4] is an ex-
perimental step that happens before the actual model training. Sev-
eral benefits make feature selection interesting to a model develop-
ers: First, redundant features increase the computational complex-
ity of the model without benefit to the classification accuracy. For
example, in convolutional models, the number of MACs (Multiply-
Accumulate) operations scale linearly with the number of features
[5]. Second, feature selection makes the model more amenable to
pruning as the dimensionality of data is reduced. Third, noisy or
weakly correlated features can make the training unstable and in-
crease overfitting. Reducing the number of features avoids mod-
elling the noise of the input and therefore decreases variance in the
generalization error. This means that a good model can be found
with fewer runs of different seeds. Finally, from a research perspec-
tive, selecting features allow us to draw conclusions on the genera-
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tion process and to interpret patterns of the feature sets. This may
give a clue about deficiencies and better feature parametrization.

Sparse estimation methods and the concept of parsimonious
representation [6] is an established field for linear models and found
recent application for DNNs [7, 8]. Unstructured pruning and fea-
ture selection is expressed in linear models as zeroing out model pa-
rameters, which also removes correlation between feature and tar-
get. In (non-linear) DNNs, this relation is more complex because
parameters’ magnitudes are not linearly connected to outcomes.
Further solutions may differ for each run, making comparisons and
drawing conclusions on feature importance difficult. Applying a
proximal operator to the iterate directly gives magnitude pruning
[9], often seen in DNN methods such as deep compression [10] or
lottery ticket [11]. But an abundance of methods exist and are used
for compression, including reweighted l2 penalized techniques [6],
log barriers [12], active sets [13] and proximal methods [9].

In Section 2, we state the problem of optimizing with feature
cardinality constraint C and derive an algorithm with the Alternat-
ing Direction Method of Multipliers (ADMM) [14] and proximal
operators [9]. We also explain how binary search is used for find-
ing a bound on C adhering to a threshold on performance loss. We
conduct experiments in Section 3, discuss results in Sec. 4, and con-
clude this study with an outlook in Sec. 5.

1.1. Study findings

• Masking half of the features results in minimal loss of accu-
racy; discarding them saves half of the DNN model complexity

• Feature selection reduces training variance and improves con-
vergence speed; enabling efficient single-run hyperparameter
searches

• Different model architectures vary in selected feature sets
• Mel features above 19 kHz seem to provide unexpected bene-

fits to ASC, with fewer information contained between 9 kHz
and 19 kHz

2. FEATURE SELECTION PROBLEM

In this section, we will derive a feature selection method using
ADMM. Instead of using an explicit penalty (e.g. l1 norm on the
feature support), we chose to have hard constraint on the feature
cardinality. We do this to make the application applicable to binary
search as we are interested in the feature sub-set and the amount of
features we can mask. The proximal operator makes our method ap-
plicable to a number of different constraints, including matrix con-
straints [15] or mixed ℓ1/ℓ2 with elastic net regularization [9].
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2.1. Feature selection using ADMM

We split the DNN loss function and non-smooth constraint with
dual decomposition and solve the sub-problem of constraining the
feature support with an proximal operator.

Our objective is to minimize the loss function of a model while
fulfilling constraints on the support of the feature set. The optimiza-
tion problems reads then as

min
θ,w

fθ(w ◦X) s.t. card(w) ≤ C, (1)

where X is the input spectrogram, w the feature support vector
(masking by rows with ◦), θ the model weights, card(w) the num-
ber of non-zero elements, and C is the hard constraint on the feature
set. We move the hard constraint into the loss function with indica-
tor

IC(w) =

{
0 if card(w) ≤ C

+∞ otherwise
(2)

and split along the feature mask w by introducing equality con-
straints

min
θ,w

fθ(w ◦X) + IC(ŵ) s.t. w = ŵ. (3)

The optimization problem contains the smooth and differentiable
term of the DNN loss function and the non-smooth indicator func-
tion IC(ŵ). While this cannot be solved directly via gradient de-
scent, we can relax the problem by introducing a Lagrangian mul-
tiplier for the equality constraint w = ŵ and optimizing those via
gradient ascent. We can derive the augmented Lagrangian as

Lp(θ,w, ŵ, µ) = fθ(w◦X)+IC(ŵ)+⟨µ,w−ŵ⟩+ ρ

2
∥w−ŵ∥22

(4)
with µ the dual variable and ρ smoothing factor of a Moreau enve-
lope [16]. A stable saddle point does not have to exist for non-linear
DNNs. In practise, treating ρ as a hyperparameter, we observe con-
vergence. The scaled version with dual variables u = 1

ρ
µ is then

Lp(θ,w, ŵ, µ) = fθ(w◦X)+IC(ŵ)+
ρ

2
(∥w−ŵ+u∥22−∥u∥22)

(5)
and we can optimize over (θ,w), ŵ and µ. In each cycle k =
0, 1, . . . we update the variables separately and repeat until conver-
gence. We use the iteration number k for variables, which are fixed
in the following section. For (θ,w) we can see that

∇Lp(θ,w, ŵk, µk) = ∇fθ(w ◦X) + (0, ρ(w − ŵ + u)) (6)

and therefore the gradient of θ is unchanged, but w is influenced
by the regularization term. In practice the PyTorch loss function
[17] is extended with the regularization term, while derivatives are
generated with automatic differentiation.

The sub-problem of ŵ has a closed-form solution. The closest
projection onto the support constraint

min
ŵ

IC(ŵ) +
ρ

2
∥w − ŵ + u∥22, (7)

gives a closed-form solution ŵ = ΠC(w + u) [9]. Basically, we
keep the C largest elements of w + u, while setting the rest to
zero. Finally, optimizing for u results in gradient ascent of the dual

variable and in total we have

(θk+1,wk+1) = (θk,wk)− γk∇fθ(w ◦X)− (0, ρ(w − ŵk + uk))

ŵk+1 = ΠC(w
k+1 + uk)

uk+1 = uk +wk+1 − ŵk+1,
(8)

with γk the learning rate of gradient descent. Observe that we keep
the penalty ρ fixed, which in turn means that we have a fixed learn-
ing rate for the duals.

2.2. Learning phase

In Section 2.1, we use ADMM to derive an optimization routine
for our hard constraint. Because we make no assumption about the
model and we cannot ensure that a saddle point even exists for our
Lagrangian, we have to take care of the optimization process. First,
we pre-train the model with all features and use those weights as ini-
tialization for our feature search. Second, we then apply Eq. 8 for
a number of epochs. The learning rate of gradient ascent is fixed,
while that of gradient descent anneals to zero over the learning cy-
cle. This ensures that the model loss dominates at the beginning,
reducing to zero those features unnecessary for good performance.
At the end of the training cycle, the penalty of the ADMM algo-
rithm dominates that of the model, forcing the constraint on feature
support to be fulfilled, even though the performance may suffer.
Finally, after finding the optimal feature mask, we prune unused
features and re-train for a small number of epochs (less than 10) to
fine-tune the model.

3. EXPERIMENTS

Our experiments use the DCASE 2022 Task 1 [3] split with samples
for training (139619), validation/development (29680), and test-
ing (29680). Each sample belongs to one of 10 different acoustic
scenes, captured at 44.1 kHz in one of 12 European cities by 3 real
(A, B, C) or 6 simulated recording devices (S1-S6).

3.1. BC-ResNet model

As a state-of-the-art ASC model, we use a BC-ResNet [18] archi-
tecture, specifically the parametrization of BC-ResNet Mod-8 [19]
which performed excellent in the DCASE 2021 challenge.

3.1.1. Pre-training

Mel-scaled spectrograms with 512 bands are extracted from full-
band audio input. We use a frame length of 93ms (4096 samples),
an overlap of 30ms (1323 samples) and Hamming weighting. We
apply a logarithmic transformation and residual normalization [19]
with λ = 0.1 to generalize across different devices.

The input features are augmented to avoid overfitting. We use a
random roll of 40% of the signal length. We also use Specaugment
[20] in frequency domain with mask parameter of 20 and Mixup
[21] with α = 0.2. We apply stochastic gradient descent (SGD) to
the model and train for 60 epochs. The learning rate increases to
0.01 in a warmup phase (3 epochs) and then decreased to 0.0001 in
the remaining 57 epochs. We use momentum of 0.9, weight decay
of 0.001, and a mini-batch size of 64.

We train the BC-ResNet with eight different random seeds. The
accuracy during training is depicted in Fig. 1 and the final perfor-
mance can be seen in Table 1. With 512 Mel bands and 1 sec audio
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per sample the model has a computational complexity of 300 k pa-
rameters and 102MMACs. We select the best performing model
(in terms of the log loss on the testing data) as the initial model
weights to use in the following experiments.

3.1.2. Optimizing with feature constraints

After pre-training a BC-ResNet model, we are applying Eq. 8 with
a given feature constrain C. The primal w0 is initialized with ones
and projected; and dual variables ŵ0,u0 with zeros. This penalizes
all features in the first step; the second step proceeds normally by
masking smallest magnitudes. We update the model weights with
an initial learning rate of 4 × 10−3 and cosine annealing for five
epochs. After finding a set of features and masking them, we fine-
tune the model for another five epochs, resetting the optimizer to
learning rate 4× 10−3 first.

The convergence of ADMM highly depends on choice of ρ. We
treat ρ as a hyperparameter and found ρ = 3 × 10−4 to be a good
trade-off between fast convergence and stability. Unfortunately, the
convergence of the variables depends not only on ρ but also on the
number of masked features. As illustrated in Fig. 1, we observe that
when masking more features, the initial convergence seems to be
faster. When masking more features than realizable (without los-
ing performance), the convergence continues only once the model’s
learning rate is annealed enough. As we use cosine annealing, this
happens in the later phase of training, where the regularization term
introduced by ADMM dominates the update step of θ and w. This
ensures that the cardinality constraint in Eq. 1 is fulfilled, though we
may lose performance. We finally see no difference in convergence
of primal and dual variables: both converge in similar rates and to
similar residuals (see Fig. 2).

3.1.3. Finding a good constraint on the feature number

Choosing an appropriate C prior running feature selection is diffi-
cult. If too high, then the model remains too complex and train-
ing speed suffers; if too low, then additional error is introduced
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Figure 1: Variance and error during training for validation accuracy.
Max, min, and geometric means are depicted for eight runs with
different random seeds are shown. Reducing number of features
from 512 to 256 improves stability and reduces variance, selecting
only 128 features affects performance.
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Figure 2: Convergence of primal (left) and dual (right) variables
for masking 256 and 384 features. Masking more features initially
increases the influence of the regularization term, but requires more
iterations to reach low residuals.

(see also Sec. 4.1). Therefore we apply the feature selection in
context of a meta heuristic by introducing a maximal degradation
ϵ = 3 × 10−2 of log loss for our pre-trained model. The heuris-
tic performs binary search, halving upwards if the log loss is under
our threshold ϵ; downwards, if not. For reliable results, we run the
experiment with 8 different random seeds and select the best per-
formance. Once the step size is below 8, we step alternate to stay
below the threshold and explore different log loss in that region.
Alternatively, (in a more conservative search) the average over all
runs could be compared to the absolute threshold. In the end, we
conclude with C = 274 masked features (see also Fig. 3).

3.2. Linear model

For comparison with the non-linear BC-ResNet model, we also train
a linear Support Vector Classifier (SVC) [22]. The SVC performs
inference with temporally global features. We reduce the time axis
of our Mel spectrogram with moments up to fifth order (mean, vari-
ance, skewness, kurtosis, and hyperskewness for each band), result-
ing in 2560 features per data sample.

Similar to the previous experiment, we apply l1 regularization
during feature selection. The penalty is treated as a hyperparameter.
A search found that the model gives the best accuracy on the testing
data for ν = 100. We have seen almost no variance for the final
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Figure 3: Log loss on validation set during binary search. Max, min,
and geometric means of eight runs with different random seeds are
shown. The dashed line indicates the threshold ϵ = 0.03 of the log
loss to the performance of the pre-trained model (see Sec. 3.1.1).
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Model MMACs Acc. (%) Log Loss

Baseline [3] 29.23 42.90 1.575
SVC (ν = 100) 0.026 43.79 1.780
BC-ResNet (512) 101.89 54.24 1.370
BC-ResNet (256) 51.53 54.10 1.496
BC-ResNet (128) 26.35 52.80 1.613

Table 1: MACs and performance on development set for best mod-
els. The number of features is indicated in brackets behind the
model.

testing results, making the need to do multiple runs unnecessary.
Compared to the DCASE 2022 baseline [3], this SVC has a bet-
ter model accuracy and a worse log loss, but requires significantly
fewer MACs (see Table 1).

4. DISCUSSION

4.1. Training variance and model reduction

Having many noisy or weakly correlated features to the targets in-
creases the risk of overfitting. We see this trend in the variance of
our validation results. As can be seen in Fig. 1 for the BC-ResNet
without feature selection (512 features), the model uses noisy fea-
tures. Even at the end of training, its accuracy differs by several
percentages. Consequently, finding a good solution requires mul-
tiple training runs, which is time- and energy-consuming. Halving
the number of features to 256 has several effects. First, in the initial
training phase, the model converges much faster on average as the
variance is reduced drastically. Then the accuracy approximately
stays the same until the final phase. All runs with different seeds
give a good final result. Thus, hyperparameter searches can be ex-
ecuted much more efficiently. This reduces experimentation time
and improves sustainability of our model search.

When reducing the number of Mel features to 128, variance
slightly decreases between epochs 30 to 50, but the final model per-
formance was compromised. We decrease variance, but underfit the
dataset by using too few features. This behavior is also supported
by our binary search, which suggested 278 masked features, i.e.,
234 remaining features (see Fig. 3).

The BC-ResNet model uses only convolutional layers [18].
Consequently, the total number of MACs scales linearly with the
number of features. By selecting only 50% of the features, we
also halve the number of operations from 101.89MMACs to
51.53MMACs without significant change in performance. When
further reducing the feature count, the log loss increases signifi-
cantly (see Table 1).

4.2. Interpretation of feature selection

Selection allows making interpretation about the feature set. This
is different to feature extraction, where all features are retained and
only their representation is changed. Fig. 4 depicts the histogram of
the selected feature in our experiments. For the BC-ResNet models,
most of the information is contained below 8 kHz. This matches
with the literature that 16 kHz sampling rate (leading to a 8 kHz
lowpass filtering) gives good ASC results. However, we also tested
pre-training of the BC-ResNet with a naı̈ve selection of all features
below 8 kHz, but model performance was below that of BC-ResNet
(128).

The feature importance around ≈19.8 kHz for all BC-ResNet
models is unexpected. It may be related to some recording artifacts
by some device types. Masking those bands may improve general-
ization. Other features are more plausible, e.g., we find that features
below 500Hz are always selected (as they relate to low frequency
or harmonics) and the region between 2.5 kHz and 8 kHz contain a
lot of information as well, e.g., for consonants in speech.

Also visible in Fig. 4, one can see that feature selection subsam-
ples the frequency bins, suggesting that the band width of ≈5.4Hz
is too small. However, features of very low frequencies (below
60Hz) are fond to be also relevant. With increasing masking, the
feature selection in regions above 500Hz starts to subsample even
more. This is most prominent when examining the 128 remaining
features. In this case, only a handful of features are selected.

When comparing the BC-ResNet results to the linear SVC
model (upper row of Fig. 4), we see that the regions below 500Hz
and between 1.5 kHz to 8 kHz contain most of the important infor-
mation. On the other hand, the linear model uses higher frequen-
cies above 9 kHz, but not the prominent peak at 19.8 kHz selected
by BC-ResNet. This may suggest that the moments of the SVC
may model different information than the convolutional layers of
BC-ResNet. This indicates that feature selection is partially model-
dependent. More work is needed to better understand this relation-
ship.
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Figure 4: Selected frequency bands for SVC (upper row) and BC-
ResNet models across input feature sizes. The selection patterns
are averaged across all 8 runs. The color indicates the number of
occurrences a feature was selected; with yellow color representing
features that are used in all runs. For the SVC model a frequency
band counts when at least one moment is selected.

5. CONCLUSION

We showed that feature selection is an important experimental step
when developing efficient machine learning models. In addition
to providing insights into the working of signal processing, it also
improves stability and makes hyperparameter search more efficient.
We applied this method in the DCASE 2022 challenge to reduce the
total number of MACs [1]. In future, we aim to further examine how
features map to different scenes, devices, and cities. This would
allow for optimizing methods and models.
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