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Abstract—Emerging fifth generation and beyond networks are
expected to deliver accurate information as fresh as possible.
In this work, we consider a wireless fading multiple access
channel, where M users communicate to a base station (BS)
in a time-slotted system. Each user can sample an information
packet in any slot of interest, compress it to a finite number of
bits and then transmit the compressed packet to the BS. The
compression and transmission result in distortion and power
consumption, respectively. Using the age of information (AoI)
metric for quantifying freshness of information, we consider
minimization of a long-term weighted average AoI across the
users, subject to average power and distortion constraints at
each user, for obtaining the number of bits to be transmitted by
a user in a given slot. We cast the problem as a constrained
Markov decision process (CMDP) and solve it via Lagrange
relaxation. We show that a threshold-type policy is optimal for the
relaxed problem. We also propose a convex optimization problem
to obtain a suboptimal but simpler stationary randomized policy,
whose minimum achievable average AoI is within twice that
of the optimal policy. Via numerical simulations, we illustrate
the threshold structure of the CMDP based solution and study
variation of the average AoIs achieved by the proposed policies
when the bounds on the average power and distortion constraints
are varied.

I. INTRODUCTION

Emerging technologies such as the fifth generation (5G) and
beyond networks demand diverse capabilities including low
communication latency, high throughput, timely and accurate
delivery of information [1]. In this work, we adopt a metric
called age of information (AoI), defined as the time elapsed
since the generation of the last successful update generated,
for quantifying the timeliness of information [2]–[5], and a
distortion metric to measure the accuracy of information. We
consider an AoI minimization problem subject to average
power and distortion constraints in a wireless multiple access
channel. Our aim is to derive a policy to decide the number
of bits a user must transmit in a slot.

Optimization of AoI and related metrics has received
tremendous interest in the recent years. Specifically, trade-offs
between AoI and distortion have been studied in [6]–[9]. The
authors in [6] consider an on-off fading channel and optimize
data freshness at the receiver subject to a constraint on the
product of an AoI term and a distortion term. The authors in
[7] consider a scenario where the destination sends requests for
updates at random times and the source generates an update
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packet over a period of time and sends it to the destination over
a noiseless channel with zero delay. The distortion is modeled
as a decreasing function of the time taken to generate an
update after a request. Under this setting, the work minimizes
an average AoI subject to a per update distortion constraint.
The authors in [8] study trade-offs among AoI, distortion
and energy in a communication network and obtain a greedy
policy which is 2-competitive, independent of all parameters
of the problem, for minimizing a linear combination of AoI,
distortion and energy terms. Different from the above works,
we consider that communication occurs over a wireless fading
channel. A related work, [9] investigates timeliness-distortion
trade-off in an energy harvesting, single-user fading channel
by minimizing the average weighted sum AoI and distortion
over all possible transmit powers and transmission intervals.
Different from [9], we consider a multi-user fading channel,
where each user is subjected to an average power constraint.

In this work, we consider a single-hop multi-user wireless
network in which status update packets can be generated in
any slot of interest, as in [10]. The users are required to
communicate the packets to a BS over fading channels subject
to average power and distortion constraints at each user. The
goal is to minimize a weighted average AoI across the users.
At each slot, our goal is to find the user and the number of bits
to be transmitted based on the channel power gain realizations
of the users and their instantaneous AoIs.

The trade-off involved is the following: For a given num-
ber of bits to be communicated to meet average distortion
constraints, transmitting over poor channels requires more
power. However, waiting for good channels may increase the
AoIs. Similarly, transmitting a lower number of bits in a
poor channel requires a lower transmit power, but results in a
higher distortion. Hence, there exists a trade-off among AoI,
distortion and power consumption terms, as in [8]. However,
unlike in [8], we consider that communication occurs over
a fading multiple access channel, where the users can first
observe instantaneous channel power gain realizations and
AoIs and then decide to transmit a certain number of bits
by adapting transmit powers. Concretely, we consider an AoI
minimization problem subject to average power and distortion
constraints, in a fading multiple access channel. The main
contributions of the paper are as follows:
• We cast the above problem as a constrained Markov deci-

sion process, which we solve via Lagrange relaxation. By
proving that the state-action value function of the relaxed

2021 19th International Symposium on Modeling and Optimization in Mobile, Ad hoc, and Wireless Networks (WiOpt)

               ISBN 978-3-903176-37-9 © 2021 IFIP



problem is sub-modular, we show that a threshold-type
policy is optimal for the relaxed problem. This solution
may be adopted only when the number of users in the
network is low, due to the curse of dimensionality of the
CMDP.

• To cater to the situation when the number of users in
a network is high, we propose a convex optimization
problem, solving which, we can obtain a stationary
randomized policy. Based on the technique developed
in [11], we prove that the average AoI achieved by
the proposed stationary randomized policy is at most
twice that of the optimal policy. Moreover, using a dual
decomposition technique, we suggest a method to solve
the proposed convex optimization problem efficiently by
decoupling the problem into M different problems which
can be solved in parallel.

• Using numerical simulations, we illustrate the threshold
structure of the CMDP based solution. We also compare
performance of the proposed policies when the bounds on
the average distortion and power constraints are varied.

II. SYSTEM MODEL

We consider M sources updating statuses to a base station
(BS). Time is slotted with unit slot duration. The slots are
indexed by n ∈ {1, 2..., N}. In the below, we present the
channel, power consumption, distortion and AoI evolution
models, and formulate a long-term average AoI minimization
problem subject to a long-term average power and distortion
constraints.

A. Channel Model

We consider that the channel power gain of user i ∈
{1, . . . ,M} is independent and identically distributed accord-
ing to the random variable Hi across the slots. Hi takes values
from a finite set H. We denote the realization of Hi in slot n
as hi(n), which is estimated at the start of the transmission
slot n perfectly, using pilot signals. Hence, at the start of any
slot, h(n) , (h1(n), h2(n), . . . , hM (n)) is known.

B. Power and Distortion Models

For reliably delivering ρ bits when the channel realization is
h in user i, let fi(ρ;h) be the transmit power required, where
fi(x;h) is a convex increasing function of x, parameterized
by h with fi(0;h) = 0 for any h ∈ H. Moreover, fi(x;h) is
submodular in (x, h), i.e., fi(x + 1;h + δ) − fi(x;h + δ) ≤
fi(r + 1;h)− fi(r;h) holds for any x and h, for any δ > 0.
When the receiver receives ρ bits from user i, let the distortion
incurred be di(ρ), where di(x) : R+ → R+ is a convex
decreasing function of x, where R+ is the set of all non-
negative real numbers. For instance, fi(x;h) = (exp(x)−1)/h
and di(x) = exp(−x) are valid functions that satisfy the above
properties. For simplicity, we consider that the number of bits
that can be delivered in a slot is a finite positive integer, i.e.,
ρ ∈ {1, 2, . . . , rmax}, where rmax is a finite positive integer.

C. Decision Variables and Constraints

As mentioned, our goal in this work is to decide the number
of bits a user must deliver to the BS in a slot, in order
to minimize an average AoI subject to average power and
distortion constraints at each user. That is, our goal is to obtain
ui,ρ(n) ∈ {0, 1}, where

ui,ρ(n) =

{
1 indicates that user i transmits ρ bits in slot n,
0 otherwise,

(1)
for n ∈ {1, 2, . . .}, i ∈ {1, . . . ,M} and ρ ∈ {1, 2, . . . , rmax}.
We refer to ui,ρ(n) as the decision variable. In the above
definition, ui,ρ(n) = 0 for all ρ ∈ {1, 2, . . . , rmax} means
that user i does not transmit in slot n.

In this case, the instantaneous power consumed and the
distortion incurred in slot n is

∑rmax

ρ=1 fi(ρ;hi(n))ui,ρ(n) and∑rmax

ρ=1 di(ρ)ui,ρ(n), respectively. For i ∈ {1, . . . ,M}, we
consider the following average power constraint:

lim
N→∞

1

N

N∑
n=1

rmax∑
ρ=1

E [fi(ρ;hi(n))ui,ρ(n)] ≤ P̄i, (2)

and the following average distortion constraint:

lim
N→∞

1

N

N∑
n=1

rmax∑
ρ=1

E[di(ρ)ui,ρ(n)] ≤ αi, (3)

where the expectations are with respect to randomness in the
channel power gain process and ui,ρ values.

As in many prior works [10], [11], we also consider a time-
division multiple access (TDMA) constraint that at most one
user can transmit in a slot, i.e., ui,ρ values must satisfy:

M∑
i=1

rmax∑
ρ=1

ui,ρ(n) ≤ 1, ∀n = 1, 2, . . . . (4)

D. AoI Model

Let ai(n) be the instantaneous age of information at the
destination in slot n for user i. It evolves as follows:

ai(n+ 1) =

{
1 if ui,ρ(n) = 1 for some ρ > 0

ai(n) + 1 otherwise.
(5)

The weighted average AoI experienced by the BS is given by

lim
N→∞

1

MN

M∑
i=1

N∑
n=1

wiE[ai(n)] , (6)

where the wi represents the weights offered to different
sources and E[·] is the expectation with respect to the ran-
domness in ai(n).

E. Problem Formulation

In this work, we aim to minimize the long-term average
age of information subject to average power and distortion
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constraints. Concretely, our aim is to solve the following
optimization problem:

A∗ = min
π

lim
N→∞

1

MN

M∑
i=1

N∑
n=1

wiE [ai(n)] , (7)

subject to (2), (3), (4),

where π is a policy, a specification of the decision rule to be
used at each slot n ∈ {1, 2 . . .} for choosing ui,ρ(n). All the
expectations are with respect to the chosen policy π.

III. SOLUTION

The optimization problem in (7) has structure of a con-
strained Markov decision process (CMDP). In this section, we
first formally cast (7) as a CMDP and provide a Lagrangian
relaxation based solution. Next, we propose a convex opti-
mization problem to obtain a stationary randomized policy,
whose maximum achievable average AoI is at most twice that
of A∗ in (7).

A. CMDP Based Solution

We first cast (7) as a CMDP by associating its parameters
and decision variables to the standard components of a CMDP.
We then relax it via Lagrangian method and obtain the optimal
solution for the relaxed problem. The components of a CMDP
associated with (7) are:

a) States: We define the state of user i at time slot n to
be (ai(n), hi(n)), where ai(n) ∈ {1, 2, . . .} and hi(n) ∈ H
are respectively the instantaneous age of information and the
channel power gain realization of user i in slot n. The state
of the system in slot n is s(n) = (a(n),h(n)), where a =
(a1, . . . , aM ) and h = (h1, . . . , hM ). The state space of the
system, S = {1, 2, . . .}M ×HM .

b) Actions: Recall that the instantaneous decision vari-
ables in slot n ∈ {1, 2, . . .} in (7) are ui,ρ(n) values
for i ∈ {1, . . . ,M} and ρ ∈ {1, 2, . . . , rmax}, defined in
(1). In our CMDP formulation, we equivalently let r(n) ,
(r1(n), . . . , rM (n)) as the instantaneous action (decision)
variable, where ri(n) ∈ {0, 1, . . . , rmax} is the number of
bits transmitted by user i in slot n. The equivalence follows
because ui,ρ(n) = 1 implies ri(n) = ρ and vice versa.
In the above, we consider that not transmitting is equiva-
lent to transmitting zero bits. That is, ui,ρ(n) = 0 for all
ρ ∈ {1, 2, . . . , rmax} is equivalent to ri(n) = 0 for any user
i and slot n. Moreover, due to the TDMA constraint in (4),
in any slot, at most one user can transmit greater than zero
bits, i.e., we can have rj(n) ≥ 0 for some j ∈ {1, . . . ,M}
and rk(n) = 0 for all k 6= j. Hence, the action space,
A = {(x1, 0, . . . , 0), (0, x2, . . . , 0), . . . , (0, 0, . . . , xM )},
where xi ∈ {0, 1, 2, . . . , rmax}.

c) Transition Probabilities: Noting that the channel
power gains evolve in independent and identically distributed
manner and using (5), the state transition probabilities for all
the states can be easily written down.

d) Instantaneous Costs: The instantaneous costs incurred
in state s(n) when action r(n) is taken are: (i) individ-
ual AoI cost, ai(n + 1) and (ii) individual power cost,
fi(ri(n);hi(n)) and (iii) individual distortion cost, di(ri(n))
for i ∈ {1, . . . ,M}.

A stationary policy, π, is a mapping from S to A. For a
stationary policy π and initial state s0 ∈ S, we define the
following long-term average expected cost functions:

Aπ(s0) = lim
N→∞

1

NM
Eπ

[
N∑
n=1

M∑
i=1

wiai(n)|s0

]
,

Pπi (s0) = lim
N→∞

1

N
Eπ

[
N∑
n=1

fi(ri(n);hi(n))|s0

]
,

and

Dπ
i (s0) = lim

N→∞

1

N
Eπ

[
N∑
n=1

di(ri(n))|s0

]
,

for all i ∈ {1, . . . ,M}, which are the long-term average
expected AoI, power and distortion costs, respectively. Now,
(7) can be equivalently restated as:

minimize
π

Aπ(s0), (8a)

subject to Pπi (s0) ≤ Pi, (8b)
Dπ
i (s0) ≤ αi, (8c)

for all i ∈ {1, . . . ,M}. In the following, we provide a
Lagrangian relaxation based solution to (8).

1) Lagrange Relaxation of the CMDP: We now relax (8)
via Lagrange relaxation. For this, define,

cλ,β(s(n), r(n)) =
1

M

M∑
i=1

ai(n+ 1) +
M∑
i=1

λifi(ri(n);hi(n))

+

M∑
i=1

βidi(ri(n)),

where λi, βi ≥ 0 are the parameters that trade-off the cost due
to the AoI, the power consumed and the distortion incurred in
user i, and λ , (λ1, . . . , λM ) and β , (β1, . . . , βM ). Define

V πλ,β(s0) = lim
N→∞

N∑
n=1

Eπ[cλ,β(·, ·)|s0]. (9)

Let V ∗λ,β(s0) = minπ V
π
λ,β(s0). It can be shown that V ∗λ,β(s0)

is identical for any initial state, s0, along the lines in [12,
Lemma 6]. For any fixed λ and β, we first obtain V ∗λ,β(s0)
by solving minπ V

π
λ (s0) via the following value iteration of

the Bellman equation:

Vn+1,λ,β(s) = min
r

E[cλ,β(·) + Vn,λ,β(s′)|s, r], (10)

starting at n = 0, where we define V0,λ,β , 0. Then, we have,
V ∗λ,β(s0) = limn→∞ Vn,λ,β(s0)/n.
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2) A Threshold Structure of the Optimal Policy for (9):
For any fixed λ and β, we prove that the optimal actions of
(9) have a threshold structure in the states. Note that the value
function in (9) can be written as

V (s) = min
r

Q(s, r), (11)

where

Q(s, r) = E[c|s, r] + γE[V (s′)|s, r], (12)

is the state-action value function. In the above, we dropped
the subscripts λ and β and the superscript, π, for notational
simplicity. We now have the following result:

Theorem 1. Let x−i = (x1, . . . , xi−1, xi+1, . . . , xM ). When
a−i, h and r−i are fixed, the optimal number of bits to be
transmitted in user i, ri is non-decreasing in AoI, ai. Similarly,
when a, h−i and r−i are fixed, ri is non-decreasing in the
channel power gain, hi.

Proof. We prove the first and the second part of the result
by showing that Q(s, r) is submodular in (ai, ri) and (hi, ri),
respectively, when all other state and action variables are fixed.
See Appendix A for details.

The above theorem says that if it is optimal to transmit
ri bits when the AoI of user i is ai (the channel power
gain is hi), we must transmit at least ri bits when its AoI
is greater than ai (the channel power gain is greater than
hi), given all other state and action variables are fixed. In
other words, the optimal policy is monotonic. This knowledge
of the optimal policy being monotonic can be exploited to
reduce computational complexity in solving the value iteration
algorithm in (10) [13]. Moreover, since ri ∈ {0, 1, . . . , rmax},
the monotonicity of the optimal policy implies existence of
rmax thresholds on the state variables, such that when ai
(hi)1 is below kth threshold and above (k − 1)th threshold,
it is optimal to transmit k − 1 bits. Such a threshold structure
simplifies the real-time implementation of the policy.

B. A Stationary Randomized Policy for Solving (7)

The CMDP based solution can be easily used when the
number of users in the network is low. However, due to its
curse of dimensionality, when the number of users is large,
it is prohibitive to adopt the CMDP solution. In order to
address such scenarios, we propose a convex optimization
problem to derive a stationary randomized policy that sub-
optimally solves (7). Specifically, we re-formulate (7) under
the following class of policies:

Policy R: In a slot, when the channel power gain realization
vector, H = h, user i transmits ρ bits with probability, µi,ρ(h)
for i ∈ {1, . . . ,M} and ρ ∈ {1, . . . , rmax}.

In the above policy, µi,ρ(h) = 0 for all ρ ∈ {1, . . . , rmax}
implies that user i is not transmitting. When user i transmits,
since the number of bits delivered, ρ ≥ 1, the update is
considered successful and the instantaneous AoI drops to 1

1The thresholds on AoI and channel power gain can be different.

(see (5)). The conditional probability of success, conditioned
on the event that the channel power gain realization, H = h,
is
∑rmax

ρ=1 µi,ρ(h). Hence, the probability of success in a

slot is EH

[∑rmax

ρ=1 µi,ρ(h)
]
. In this case, the inter-success

intervals are geometrically distributed random variables with
mean, 1/EH

[∑rmax

ρ=1 µi,ρ(h)
]
. Hence, the long-term average

AoI can be written as 1/EH

[∑rmax

ρ=1 µi,ρ(h)
]

[11]. Moreover,
under the class of policies R, we can re-formulate (7) as the
following optimization problem:

A∗R = min
µi,ρ(h)

1

M

M∑
i=1

wi

EH

[∑rmax

ρ=1 µi,ρ(h)
] , (13a)

subject to EH

[
rmax∑
ρ=1

fi(ρ;hi)µi,ρ(h)

]
≤ P̄i, (13b)

EH

[
rmax∑
ρ=1

di(ρ)µi,ρ(h)

]
≤ αi, (13c)

EH

[
M∑
i=1

rmax∑
ρ=1

µi,ρ(h)

]
≤ 1, (13d)

0 ≤ µi,ρ(h) ≤ 1, (13e)

for all i ∈ {1, . . . ,M} and ρ ∈ {1, . . . , rmax}, where (13b),
(13c) and (13d) are respectively obtained by specializing (2),
(3) and (4) to the class of stationary randomized policies, R.
The above problem in (13) is a convex optimization problem.
Hence, it can be solved optimally via standard numerical
techniques, with a computational complexity proportional to
Mrmax|H|M , where |H| is the number of possible channel
states in a user.

In the below, we propose a method to obtain the optimal so-
lution to (13) with a lower complexity via dual decomposition
[14]. For this, note that the only constraint that is common to
all the users is (13d). Define δ ≥ 0 as the Lagrange variable
corresponding to constraint (13d) and we can write down the
following problem for obtaining the dual function:

g(δ) = min
µi,ρ(h)

1

M

M∑
i=1

wi

E
[∑rmax

ρ=1 µi,ρ(h)
]+

δ

(
EH

[
M∑
i=1

rmax∑
ρ=1

µi,ρ(h)

]
− 1

)
, (14)

subject to (13b), (13c),

for all i ∈ {1, . . . ,M} and ρ ∈ {1, . . . , rmax}. For a given
δ, as (13b), (13c) and (13d) are applicable to individual
users separately, (14) can be decoupled into M optimization
problems which can be solved in parallel. Specifically, the
decoupled problem for user i is the following:

gi(δ) =
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Fig. 1: Optimal actions for a single user case for different states, (a, h) when λ =
1, β = 10 and rmax = 9. We observe monotonicity of the optimal solution proved in
Theorem 1.

min
µi,ρ(h)

wi

MEH

[∑rmax

ρ=1 µi,ρ(h)
] + δEH

[
rmax∑
ρ=1

µi,ρ(h)

]
− δ

M
,

(15)
subject to (13b), (13c),

for all ρ ∈ {1, . . . , rmax}. Clearly, we have, g(δ) =∑M
i=1 gi(δ). The optimal δ value is the one that maximizes

the dual function g(δ) =
∑M
i=1 gi(δ), i.e.,

δ∗ = arg max
δ≥0

M∑
i=1

gi(δ). (16)

The optimal µi,ρ(h) can be obtained by solving (15) for
δ = δ∗. For any δ, the optimization problem in (15) can
be solved in parallel, simultaneously for all the users, with
computational complexity proportional to rmax|H|.

In the following theorem, we show that the average AoI
achieved in (13) is at most twice the optimal AoI.

Theorem 2. The optimal objective value of (13), A∗R is at
most 2 times that of (7), A∗, i.e., A∗R < 2A∗.

Proof. We adopt the technique developed in [11] for proving
the result. Specifically, we first obtain an optimization prob-
lem, called the lower-bound problem, whose optimal objective
value, LB , is a lower bound to A∗ in (7). We then show that
the optimal solution to the lower-bound problem is a feasible
solution to (13). Then, we relate the objective functions of the
lower bound problem, LB , and (13), under the optimal solution
to the lower-bound problem. Through this, we establish that
A∗R < 2A∗. See Appendix B for details.

The proof of Theorem 2 is based on [11]. The main
contribution in the proof is to show that the optimal policy
of the lower-bound problem is a feasible policy for (13).
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Fig. 2: The long-term achievable AoI regions in a two-user case for different bounds
on average power and distortion constraints under the proposed stationary randomized
policy, R, obtained by solving (13). We consider that the channel power gain h takes
values, 1, 2, 3, 4 and 10 with probabilities 0.63581, 0.23024, 0.0847, 0.03116 and
0.01809, respectively, and rmax = 10.

IV. NUMERICAL RESULTS

In this section, we obtain the numerical results assuming
that the power required to deliver x bits with the channel power
gain of h is f(x;h) = (ex − 1)/h and that the distortion
incurred when x bits are transmitted is, d(x) = 2−x for all
the users.

In Fig. 1, we show the optimal actions taken for different
states, (a, h), in a single user case, where a is the instantaneous
AoI and h is the channel power gain. From the figure, we
observe that when the instantaneous AoI is 1, it is optimal to
not transmit irrespective of the channel gain realization, as it
is the minimum AoI that can be achieved. For the states with
small channel power gains, as the AoI increases, it is optimal
to transmit only one bit, at the expense of high distortion, as
transmitting a single bit consumes a lower power compared
to transmitting higher bits. For the states with high channel
power gains, as the AoI increases, it is optimal to transmit
two bits, which leads to a lower distortion. Note that the power
consumed when the channel power gains are high is lower than
that when the channel power gains are low. Moreover, from
the figure, we can also observe the result of Theorem 1 that for
fixed h (and respectively, a), the number of bits transmitted is
non-decreasing in a (h).

In Fig. 2, we present long-term average achievable AoI
regions in a two-user case. For obtaining the plot, we let
w1 = w and w2 = 1 − w in (13) and vary w over [0, 1].
For a specific w, suppose µi,ρ(h) is the optimal policy, then
A∗R,i , 1/EH

[∑rmax

ρ=1 µi,ρ(h)
]

for i ∈ {1, 2}. From the fig-
ure, it can be seen that if the bound on the distortion constraints
of user 1 and user 2, α1 and α2, respectively, are lower,
the achievable AoI region is smaller. This is because, when
the distortion constraint is stringent, one needs to transmit
more bits to meet the constraint. This leads to less frequent
transmission in order to meet the average power constraint,
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P̄ , when the bound on the average distortion, α = 0.05.
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(b) Variation of the average AoI with the bound on the average distortion, α,
when the bound on the average transmission power, P̄ = 0.05.

Fig. 3: Variation of the average AoI achieved by different policies with bounds on the average power and distortion, for rmax = 9 and the channel power gain h takes values,
1, 2, 3, 4 and 10 with probabilities 0.63581, 0.23024, 0.0847, 0.03116 and 0.01809, respectively,

leading to a higher average AoI.
In Fig. 3a and Fig. 3b, we plot the variation of the average

AoI achieved by the CMDP based solution and the stationary
randomized policy with the bound on the average power and
distortion, respectively. We also plot the average AoI achieved
by the lower-bound problem in (18). As expected, in all the
curves, the average AoI decreases with increasing bound on
the average power and distortion. This is because with a higher
transmission power, we can transmit frequently, even when the
channel power gains are low while maintaining the required
average distortion by transmitting certain minimum number
of bits. Similarly, when the maximum average distortion is
increased, we can afford to transmit frequently, a lower number
of bits so that the average power constraint is satisfied.

V. CONCLUSION

In this work, we considered a base station receiving status
update packets from multiple users over a fading multiple
access channel. In a slot, a user can sample a packet, compress
it to a finite number of bits and transmit them. The process of
compression and transmission result in distortion and power
consumption, respectively. Under this setting, our goal was
to obtain the number of bits a user must transmit in a slot
for minimizing an average AoI subject to average power and
distortion constraints at each user. We provided a CMDP
based solution to the above problem, which can be used in
a low-density network, and showed that the optimal actions
of the Lagrange relaxation of the CMDP exhibits a threshold
structure in the state variables. In order to cater to high-
density networks, we proposed a convex optimization problem,
and presented a method to efficiently solve it for obtaining a
simpler, 2-competitive stationary randomized policy. Through
numerical simulations, we illustrated the threshold structure of
the CMDP based solution and studied variation of the average

AoIs achieved by policies when the bounds on the average
power and distortion constraints are varied.

VI. APPENDIX

A. Proof of Theorem 1

To prove the first part of the theorem, it is sufficient to prove
Q(ai,a−i,h, ri, r−i) is submodular in (ai, ri), when a−i, h
and r−i are fixed [13], which we prove below. We replace all
the fixed quantities with a dot (·) for brevity.

Consider

Q(ai + 1, ri + 1, ·)−Q(ai + 1, ri, ·)
= 1 + λifi(ri + 1;hi) + βidi(ri + 1)

+ γE[V (1,a′−i,h
′)|ai + 1, ri + 1, ·]

− ((ai + 1)(1− Iri>0) + 1 + λifi(ri;hi) + βidi(ri)

+ γE[V ((ai + 1)(1− Iri>0) + 1,a′−i,h
′)|ai + 1, ri, ·])

a
≤ 1 + λifi(ri + 1;hi) + βidi(ri + 1)

+ γE[V (1,a′−i,h
′)|ai, ri + 1, ·]

− (ai(1− Iri>0) + 1 + λifi(ri;hi) + βidi(ri)

+γE[V (ai(1− Iri>0) + 1,a′−i,h
′)|ai, ri, ·]

)
, (17)

where (a) holds true with equality when ri > 0. However,
when ri = 0, (a) is true because V (a, ·) is non-decreasing in a,
which we prove in the below via induction. The instantaneous
cost, cλ,β(n) =

∑M
i=1 ai(n+ 1) +

∑M
i=1 λifi(ri(n);hi(n)) +∑M

i=1 βiE[di(ri(n))] is non-decreasing function of ai. Assume
that Vn(ai(1− Iri>0)+1, ·) is non-decreasing in ai. Note that

P(ai(1− Iri>0) + 1,a′−i,h
′|ai, ·, ri, r−i) = P(h′|h)

= P((ai + 1)(1− Iri>0) + 1,a′−i,h
′|ai + 1, ·, ri, r−i),

as the realization of ai+1 is deterministic for a given action ri.
Since the positive weighted sum of non-decreasing functions is
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non-decreasing, E[V (ai(1−Iri>0)+1,a′−i,h
′)|ai, ri, ·] is non-

decreasing in ai. Now, since the minimum operator preserve
the monotonicity, V (a, ·) is non-decreasing in a. This proves
the first part of the result.

Similarly, for proving the second part of the theorem, it is
sufficient to prove that Q(ai, hi, ri, ·) is submodular in (hi, ri).
For some δ > 0, consider

Q(ai, hi + δ, ri + 1, ·)−Q(ai, hi, ri, ·)
= 1 + λifi(ri + 1;hi + δ) + βidi(ri + 1)

+ γE[V (1,a′−i,h
′)|ai,a−i, hi + δ, ri + 1, ·]

− (ai(1− Iri>0) + 1 + λifi(ri;hi + δ) + βidi(ri)

+γE[V (ai(1− Iri>0) + 1,a′−i,h
′)|ai,a−i, hi, ri, ·]

)
a
≤ 1 + λifi(ri + 1;hi) + βidi(ri + 1)

+ γE[V (1,a′−i,h
′)|ai,a−i, hi, ri + 1, ·]

− (ai(1− Iri>0) + 1 + λifi(ri;hi) + βidi(ri)

+γE[V (ai(1− Iri>0) + 1,a′−i,h
′)|ai,a−i, hi, ri, ·]

)
,

where (a) is because fi(ri+1;hi+δ)−fi(ri;hi+δ) ≤ fi(ri+
1;hi)− fi(ri;hi) due to the assumption of sub-modularity of
the power function in r and h. Moreover, since the channel
realizations transition independently, E[V (ai(1 − Iri>0) +
1,a′−i,h

′)|ai,a−i, x, ri + 1, ·] is identical for x = hi + δ and
x = hi, for any ri ≥ 0. Hence the proof.

B. Proof of Theorem 2

Consider the following optimization problem:

LB =

min
π

lim
N→∞

1

2M

M∑
i=1

wi

 1

1
NE

[∑N
n=1

∑rmax

ρ=1 ui,ρ(n)
] + 1

 ,

(18)
subject to (2), (3), (4),

where 1
NE

[∑N
n=1

∑rmax

ρ=1 ui,ρ(n)
]

gives the time-average of
the expected number of successful updates over N slots. Along
the lines in [15], we can obtain that LB ≤ A∗. For proving the
result, we construct a feasible policy to (13) from the optimal
policy to (18). Let ũi,ρ(n) be the optimal solution to (18).
Define NN (h) = {n : h(n) = h}Nn=1 and

µ̃i,ρ(h) = lim
N→∞

1

|NN (h)|
∑

n∈NN (h)

ũi,ρ(n).

Consider

E

[
lim
N→∞

1

N

N∑
n=1

fi(ρ;hi(n))ũi,ρ(n)

]

= E

 lim
N→∞

1

N

∑
h

∑
n∈NN (h)

fi(ρ;hi(n))ũi,ρ(n)



= E

 lim
N→∞

∑
h

(
|NN (h)|

N

) fi(ρ;hi)

|NN (h)|
∑

n∈NN (h)

ũi,ρ(n)


= E

∑
{h}

P(h)fi(ρ;hi)µ̃i,ρ(h)

 = EH [fi(ρ;hi)µ̃i,ρ(h)] .

Hence,

lim
N→∞

E

[
1

N

N∑
n=1

rmax∑
ρ=1

fi(ρ;h)ũi,ρ(n)

]
≤ P̄i

=⇒ EH

[
rmax∑
ρ=1

fi(ρ;hi)µ̃i,ρ(h)

]
≤ P̄i.

Similarly, we can prove that (13c) and (13d) are satisfied. Now,
comparing the objective functions of (18) and (13), we have,
AR < 2LB . Now, noting that LB ≤ A∗ ≤ AR ≤ A∗R, we get,
A∗R < 2A∗.
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