Shortcuts

Source code for torch.distributions.beta

# mypy: allow-untyped-defs
import torch
from torch import Tensor
from torch.distributions import constraints
from torch.distributions.dirichlet import Dirichlet
from torch.distributions.exp_family import ExponentialFamily
from torch.distributions.utils import broadcast_all
from torch.types import _Number, _size


__all__ = ["Beta"]


[docs]class Beta(ExponentialFamily): r""" Beta distribution parameterized by :attr:`concentration1` and :attr:`concentration0`. Example:: >>> # xdoctest: +IGNORE_WANT("non-deterministic") >>> m = Beta(torch.tensor([0.5]), torch.tensor([0.5])) >>> m.sample() # Beta distributed with concentration concentration1 and concentration0 tensor([ 0.1046]) Args: concentration1 (float or Tensor): 1st concentration parameter of the distribution (often referred to as alpha) concentration0 (float or Tensor): 2nd concentration parameter of the distribution (often referred to as beta) """ arg_constraints = { "concentration1": constraints.positive, "concentration0": constraints.positive, } support = constraints.unit_interval has_rsample = True def __init__(self, concentration1, concentration0, validate_args=None): if isinstance(concentration1, _Number) and isinstance(concentration0, _Number): concentration1_concentration0 = torch.tensor( [float(concentration1), float(concentration0)] ) else: concentration1, concentration0 = broadcast_all( concentration1, concentration0 ) concentration1_concentration0 = torch.stack( [concentration1, concentration0], -1 ) self._dirichlet = Dirichlet( concentration1_concentration0, validate_args=validate_args ) super().__init__(self._dirichlet._batch_shape, validate_args=validate_args)
[docs] def expand(self, batch_shape, _instance=None): new = self._get_checked_instance(Beta, _instance) batch_shape = torch.Size(batch_shape) new._dirichlet = self._dirichlet.expand(batch_shape) super(Beta, new).__init__(batch_shape, validate_args=False) new._validate_args = self._validate_args return new
@property def mean(self) -> Tensor: return self.concentration1 / (self.concentration1 + self.concentration0) @property def mode(self) -> Tensor: return self._dirichlet.mode[..., 0] @property def variance(self) -> Tensor: total = self.concentration1 + self.concentration0 return self.concentration1 * self.concentration0 / (total.pow(2) * (total + 1))
[docs] def rsample(self, sample_shape: _size = ()) -> Tensor: return self._dirichlet.rsample(sample_shape).select(-1, 0)
[docs] def log_prob(self, value): if self._validate_args: self._validate_sample(value) heads_tails = torch.stack([value, 1.0 - value], -1) return self._dirichlet.log_prob(heads_tails)
[docs] def entropy(self): return self._dirichlet.entropy()
@property def concentration1(self) -> Tensor: result = self._dirichlet.concentration[..., 0] if isinstance(result, _Number): return torch.tensor([result]) else: return result @property def concentration0(self) -> Tensor: result = self._dirichlet.concentration[..., 1] if isinstance(result, _Number): return torch.tensor([result]) else: return result @property def _natural_params(self) -> tuple[Tensor, Tensor]: return (self.concentration1, self.concentration0) def _log_normalizer(self, x, y): return torch.lgamma(x) + torch.lgamma(y) - torch.lgamma(x + y)

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy