Shortcuts

Source code for torch.distributions.cauchy

# mypy: allow-untyped-defs
import math

import torch
from torch import inf, nan, Tensor
from torch.distributions import constraints
from torch.distributions.distribution import Distribution
from torch.distributions.utils import broadcast_all
from torch.types import _Number, _size


__all__ = ["Cauchy"]


[docs]class Cauchy(Distribution): r""" Samples from a Cauchy (Lorentz) distribution. The distribution of the ratio of independent normally distributed random variables with means `0` follows a Cauchy distribution. Example:: >>> # xdoctest: +IGNORE_WANT("non-deterministic") >>> m = Cauchy(torch.tensor([0.0]), torch.tensor([1.0])) >>> m.sample() # sample from a Cauchy distribution with loc=0 and scale=1 tensor([ 2.3214]) Args: loc (float or Tensor): mode or median of the distribution. scale (float or Tensor): half width at half maximum. """ arg_constraints = {"loc": constraints.real, "scale": constraints.positive} support = constraints.real has_rsample = True def __init__(self, loc, scale, validate_args=None): self.loc, self.scale = broadcast_all(loc, scale) if isinstance(loc, _Number) and isinstance(scale, _Number): batch_shape = torch.Size() else: batch_shape = self.loc.size() super().__init__(batch_shape, validate_args=validate_args)
[docs] def expand(self, batch_shape, _instance=None): new = self._get_checked_instance(Cauchy, _instance) batch_shape = torch.Size(batch_shape) new.loc = self.loc.expand(batch_shape) new.scale = self.scale.expand(batch_shape) super(Cauchy, new).__init__(batch_shape, validate_args=False) new._validate_args = self._validate_args return new
@property def mean(self) -> Tensor: return torch.full( self._extended_shape(), nan, dtype=self.loc.dtype, device=self.loc.device ) @property def mode(self) -> Tensor: return self.loc @property def variance(self) -> Tensor: return torch.full( self._extended_shape(), inf, dtype=self.loc.dtype, device=self.loc.device )
[docs] def rsample(self, sample_shape: _size = torch.Size()) -> Tensor: shape = self._extended_shape(sample_shape) eps = self.loc.new(shape).cauchy_() return self.loc + eps * self.scale
[docs] def log_prob(self, value): if self._validate_args: self._validate_sample(value) return ( -math.log(math.pi) - self.scale.log() - (((value - self.loc) / self.scale) ** 2).log1p() )
[docs] def cdf(self, value): if self._validate_args: self._validate_sample(value) return torch.atan((value - self.loc) / self.scale) / math.pi + 0.5
[docs] def icdf(self, value): return torch.tan(math.pi * (value - 0.5)) * self.scale + self.loc
[docs] def entropy(self): return math.log(4 * math.pi) + self.scale.log()

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy