Shortcuts

Source code for torch.distributions.exponential

# mypy: allow-untyped-defs
import torch
from torch import Tensor
from torch.distributions import constraints
from torch.distributions.exp_family import ExponentialFamily
from torch.distributions.utils import broadcast_all
from torch.types import _Number, _size


__all__ = ["Exponential"]


[docs]class Exponential(ExponentialFamily): r""" Creates a Exponential distribution parameterized by :attr:`rate`. Example:: >>> # xdoctest: +IGNORE_WANT("non-deterministic") >>> m = Exponential(torch.tensor([1.0])) >>> m.sample() # Exponential distributed with rate=1 tensor([ 0.1046]) Args: rate (float or Tensor): rate = 1 / scale of the distribution """ arg_constraints = {"rate": constraints.positive} support = constraints.nonnegative has_rsample = True _mean_carrier_measure = 0 @property def mean(self) -> Tensor: return self.rate.reciprocal() @property def mode(self) -> Tensor: return torch.zeros_like(self.rate) @property def stddev(self) -> Tensor: return self.rate.reciprocal() @property def variance(self) -> Tensor: return self.rate.pow(-2) def __init__(self, rate, validate_args=None): (self.rate,) = broadcast_all(rate) batch_shape = torch.Size() if isinstance(rate, _Number) else self.rate.size() super().__init__(batch_shape, validate_args=validate_args)
[docs] def expand(self, batch_shape, _instance=None): new = self._get_checked_instance(Exponential, _instance) batch_shape = torch.Size(batch_shape) new.rate = self.rate.expand(batch_shape) super(Exponential, new).__init__(batch_shape, validate_args=False) new._validate_args = self._validate_args return new
[docs] def rsample(self, sample_shape: _size = torch.Size()) -> Tensor: shape = self._extended_shape(sample_shape) return self.rate.new(shape).exponential_() / self.rate
[docs] def log_prob(self, value): if self._validate_args: self._validate_sample(value) return self.rate.log() - self.rate * value
[docs] def cdf(self, value): if self._validate_args: self._validate_sample(value) return 1 - torch.exp(-self.rate * value)
[docs] def icdf(self, value): return -torch.log1p(-value) / self.rate
[docs] def entropy(self): return 1.0 - torch.log(self.rate)
@property def _natural_params(self) -> tuple[Tensor]: return (-self.rate,) def _log_normalizer(self, x): return -torch.log(-x)

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy