Shortcuts

Source code for torch.distributions.half_cauchy

# mypy: allow-untyped-defs
import math

import torch
from torch import inf, Tensor
from torch.distributions import constraints
from torch.distributions.cauchy import Cauchy
from torch.distributions.transformed_distribution import TransformedDistribution
from torch.distributions.transforms import AbsTransform


__all__ = ["HalfCauchy"]


[docs]class HalfCauchy(TransformedDistribution): r""" Creates a half-Cauchy distribution parameterized by `scale` where:: X ~ Cauchy(0, scale) Y = |X| ~ HalfCauchy(scale) Example:: >>> # xdoctest: +IGNORE_WANT("non-deterministic") >>> m = HalfCauchy(torch.tensor([1.0])) >>> m.sample() # half-cauchy distributed with scale=1 tensor([ 2.3214]) Args: scale (float or Tensor): scale of the full Cauchy distribution """ arg_constraints = {"scale": constraints.positive} support = constraints.nonnegative has_rsample = True def __init__(self, scale, validate_args=None): base_dist = Cauchy(0, scale, validate_args=False) super().__init__(base_dist, AbsTransform(), validate_args=validate_args)
[docs] def expand(self, batch_shape, _instance=None): new = self._get_checked_instance(HalfCauchy, _instance) return super().expand(batch_shape, _instance=new)
@property def scale(self) -> Tensor: return self.base_dist.scale @property def mean(self) -> Tensor: return torch.full( self._extended_shape(), math.inf, dtype=self.scale.dtype, device=self.scale.device, ) @property def mode(self) -> Tensor: return torch.zeros_like(self.scale) @property def variance(self) -> Tensor: return self.base_dist.variance
[docs] def log_prob(self, value): if self._validate_args: self._validate_sample(value) value = torch.as_tensor( value, dtype=self.base_dist.scale.dtype, device=self.base_dist.scale.device ) log_prob = self.base_dist.log_prob(value) + math.log(2) log_prob = torch.where(value >= 0, log_prob, -inf) return log_prob
[docs] def cdf(self, value): if self._validate_args: self._validate_sample(value) return 2 * self.base_dist.cdf(value) - 1
[docs] def icdf(self, prob): return self.base_dist.icdf((prob + 1) / 2)
[docs] def entropy(self): return self.base_dist.entropy() - math.log(2)

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy