Shortcuts

Source code for torch.distributions.inverse_gamma

# mypy: allow-untyped-defs
import torch
from torch import Tensor
from torch.distributions import constraints
from torch.distributions.gamma import Gamma
from torch.distributions.transformed_distribution import TransformedDistribution
from torch.distributions.transforms import PowerTransform


__all__ = ["InverseGamma"]


[docs]class InverseGamma(TransformedDistribution): r""" Creates an inverse gamma distribution parameterized by :attr:`concentration` and :attr:`rate` where:: X ~ Gamma(concentration, rate) Y = 1 / X ~ InverseGamma(concentration, rate) Example:: >>> # xdoctest: +IGNORE_WANT("non-deterinistic") >>> m = InverseGamma(torch.tensor([2.0]), torch.tensor([3.0])) >>> m.sample() tensor([ 1.2953]) Args: concentration (float or Tensor): shape parameter of the distribution (often referred to as alpha) rate (float or Tensor): rate = 1 / scale of the distribution (often referred to as beta) """ arg_constraints = { "concentration": constraints.positive, "rate": constraints.positive, } support = constraints.positive has_rsample = True def __init__(self, concentration, rate, validate_args=None): base_dist = Gamma(concentration, rate, validate_args=validate_args) neg_one = -base_dist.rate.new_ones(()) super().__init__( base_dist, PowerTransform(neg_one), validate_args=validate_args )
[docs] def expand(self, batch_shape, _instance=None): new = self._get_checked_instance(InverseGamma, _instance) return super().expand(batch_shape, _instance=new)
@property def concentration(self) -> Tensor: return self.base_dist.concentration @property def rate(self) -> Tensor: return self.base_dist.rate @property def mean(self) -> Tensor: result = self.rate / (self.concentration - 1) return torch.where(self.concentration > 1, result, torch.inf) @property def mode(self) -> Tensor: return self.rate / (self.concentration + 1) @property def variance(self) -> Tensor: result = self.rate.square() / ( (self.concentration - 1).square() * (self.concentration - 2) ) return torch.where(self.concentration > 2, result, torch.inf)
[docs] def entropy(self): return ( self.concentration + self.rate.log() + self.concentration.lgamma() - (1 + self.concentration) * self.concentration.digamma() )

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy