Shortcuts

Source code for torch.distributions.poisson

# mypy: allow-untyped-defs
import torch
from torch import Tensor
from torch.distributions import constraints
from torch.distributions.exp_family import ExponentialFamily
from torch.distributions.utils import broadcast_all
from torch.types import _Number


__all__ = ["Poisson"]


[docs]class Poisson(ExponentialFamily): r""" Creates a Poisson distribution parameterized by :attr:`rate`, the rate parameter. Samples are nonnegative integers, with a pmf given by .. math:: \mathrm{rate}^k \frac{e^{-\mathrm{rate}}}{k!} Example:: >>> # xdoctest: +SKIP("poisson_cpu not implemented for 'Long'") >>> m = Poisson(torch.tensor([4])) >>> m.sample() tensor([ 3.]) Args: rate (Number, Tensor): the rate parameter """ arg_constraints = {"rate": constraints.nonnegative} support = constraints.nonnegative_integer @property def mean(self) -> Tensor: return self.rate @property def mode(self) -> Tensor: return self.rate.floor() @property def variance(self) -> Tensor: return self.rate def __init__(self, rate, validate_args=None): (self.rate,) = broadcast_all(rate) if isinstance(rate, _Number): batch_shape = torch.Size() else: batch_shape = self.rate.size() super().__init__(batch_shape, validate_args=validate_args)
[docs] def expand(self, batch_shape, _instance=None): new = self._get_checked_instance(Poisson, _instance) batch_shape = torch.Size(batch_shape) new.rate = self.rate.expand(batch_shape) super(Poisson, new).__init__(batch_shape, validate_args=False) new._validate_args = self._validate_args return new
[docs] def sample(self, sample_shape=torch.Size()): shape = self._extended_shape(sample_shape) with torch.no_grad(): return torch.poisson(self.rate.expand(shape))
[docs] def log_prob(self, value): if self._validate_args: self._validate_sample(value) rate, value = broadcast_all(self.rate, value) return value.xlogy(rate) - rate - (value + 1).lgamma()
@property def _natural_params(self) -> tuple[Tensor]: return (torch.log(self.rate),) def _log_normalizer(self, x): return torch.exp(x)

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy