Shortcuts

Source code for torch.distributions.weibull

# mypy: allow-untyped-defs
import torch
from torch import Tensor
from torch.distributions import constraints
from torch.distributions.exponential import Exponential
from torch.distributions.gumbel import euler_constant
from torch.distributions.transformed_distribution import TransformedDistribution
from torch.distributions.transforms import AffineTransform, PowerTransform
from torch.distributions.utils import broadcast_all


__all__ = ["Weibull"]


[docs]class Weibull(TransformedDistribution): r""" Samples from a two-parameter Weibull distribution. Example: >>> # xdoctest: +IGNORE_WANT("non-deterministic") >>> m = Weibull(torch.tensor([1.0]), torch.tensor([1.0])) >>> m.sample() # sample from a Weibull distribution with scale=1, concentration=1 tensor([ 0.4784]) Args: scale (float or Tensor): Scale parameter of distribution (lambda). concentration (float or Tensor): Concentration parameter of distribution (k/shape). """ arg_constraints = { "scale": constraints.positive, "concentration": constraints.positive, } support = constraints.positive def __init__(self, scale, concentration, validate_args=None): self.scale, self.concentration = broadcast_all(scale, concentration) self.concentration_reciprocal = self.concentration.reciprocal() base_dist = Exponential( torch.ones_like(self.scale), validate_args=validate_args ) transforms = [ PowerTransform(exponent=self.concentration_reciprocal), AffineTransform(loc=0, scale=self.scale), ] super().__init__(base_dist, transforms, validate_args=validate_args)
[docs] def expand(self, batch_shape, _instance=None): new = self._get_checked_instance(Weibull, _instance) new.scale = self.scale.expand(batch_shape) new.concentration = self.concentration.expand(batch_shape) new.concentration_reciprocal = new.concentration.reciprocal() base_dist = self.base_dist.expand(batch_shape) transforms = [ PowerTransform(exponent=new.concentration_reciprocal), AffineTransform(loc=0, scale=new.scale), ] super(Weibull, new).__init__(base_dist, transforms, validate_args=False) new._validate_args = self._validate_args return new
@property def mean(self) -> Tensor: return self.scale * torch.exp(torch.lgamma(1 + self.concentration_reciprocal)) @property def mode(self) -> Tensor: return ( self.scale * ((self.concentration - 1) / self.concentration) ** self.concentration.reciprocal() ) @property def variance(self) -> Tensor: return self.scale.pow(2) * ( torch.exp(torch.lgamma(1 + 2 * self.concentration_reciprocal)) - torch.exp(2 * torch.lgamma(1 + self.concentration_reciprocal)) )
[docs] def entropy(self): return ( euler_constant * (1 - self.concentration_reciprocal) + torch.log(self.scale * self.concentration_reciprocal) + 1 )

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy