Shortcuts

Source code for torch.export.dynamic_shapes

# mypy: allow-untyped-defs
import dataclasses
import inspect
import logging
import sys
from collections import defaultdict
from enum import auto, Enum
from typing import Any, Callable, Optional, TYPE_CHECKING, Union

import torch
from torch.utils._pytree import (
    _get_node_type,
    BUILTIN_TYPES,
    keystr,
    LeafSpec,
    MappingKey,
    SequenceKey,
    SUPPORTED_NODES,
    tree_flatten,
    tree_map_with_path,
)

from .exported_program import ExportedProgram


if TYPE_CHECKING:
    from sympy import Symbol

    from torch._guards import Source
    from torch.fx.experimental.symbolic_shapes import ShapeEnv, StrictMinMaxConstraint

__all__ = [
    "Constraint",
    "Dim",
    "dims",
    "refine_dynamic_shapes_from_suggested_fixes",
]


log = logging.getLogger(__name__)


class _DimHint(Enum):
    """
    Enum for dynamic shape hints.
    - AUTO means automatic inference of shape (static or dynamic).
    - STATIC means static shape (always specialized).
    - DYNAMIC means dynamic, will error out if specialized.
    """

    AUTO = auto()
    STATIC = auto()
    DYNAMIC = auto()


class _Dim(type):
    """
    Metaclass for :func:`Dim` types.
    """

    @staticmethod
    def readable(name, min_, max_):
        from torch.utils._sympy.numbers import int_oo

        if min_ == 2:
            min_ = None
        if max_ == int_oo:
            max_ = None
        if min_ is None and max_ is None:
            return f"Dim('{name}')"
        if min_ is None:
            return f"Dim('{name}', max={max_})"
        if max_ is None:
            return f"Dim('{name}', min={min_})"
        return f"Dim('{name}', min={min_}, max={max_})"

    def __add__(cls, other):
        # e.g., dim + 1
        if type(other) is not int:
            raise NotImplementedError(
                f"Attempted to add {other} to {cls.__name__}, where an integer was expected. "
                "(Only increasing linear operations with integer coefficients are supported.)"
            )
        return cls._derive(lambda x: x + other)

    def __radd__(cls, other):
        return cls + other

    def __sub__(cls, other):
        # e.g., dim - 1
        if type(other) is not int:
            raise NotImplementedError(
                f"Attempted to subtract {other} from {cls.__name__}, where an integer was expected. "
                "(Only increasing linear operations with integer coefficients are supported.)"
            )
        return cls._derive(lambda x: x - other)

    def __rsub__(cls, other):
        raise NotImplementedError(
            f"Attempted to negate {cls.__name__}. "
            "(Only increasing linear operations with integer coefficients are supported.)"
        )

    def __mul__(cls, other):
        # e.g., dim * 2
        if type(other) is not int or other <= 0:
            raise NotImplementedError(
                f"Attempted to multiply {other} with {cls.__name__}, where a positive integer was expected. "
                "(Only increasing linear operations with integer coefficients are supported.)"
            )
        return cls._derive(lambda x: x * other)

    def __rmul__(cls, other):
        return cls * other

    def _derived_name(cls, fn):
        from sympy import sympify

        return str(fn(sympify(cls.__name__)))

    def _derive(cls, fn):
        return _DerivedDim(cls._derived_name(fn), (int,), {"root": cls, "fn": fn})


class _StaticDim(_Dim):
    """
    Meta class for static :func:`Dim` types.

    This class is only for setting and checking static dim constraints,
    and the user should never interact with it.
    """

    @property
    def min(self):
        return self.value  # type: ignore[attr-defined]

    @property
    def max(self):
        return self.value  # type: ignore[attr-defined]


class _DerivedDim(_Dim):
    """
    Metaclass for derived :func:`Dim` types.

    Currently we only support increasing linear expressions with integer coefficients.
    In other words, a derived Dim can always be written in the form Ax + B, where
    x is a regular Dim (i.e., non-derived Dim), A and B are integers, and A is positive.
    (In particular, the latter ensures that x < y => Ax + B < Ay + B.)
    These restrictions on the form of derived Dims makes the metatheory simpler: e.g.,
    it simplifies computing ranges for derived Dims, solving for underlying regular Dims,
    deciding equalities between derived Dims, and so on.

    The function lambda x: Ax + B is expressed by `fn`, where x is a normal Dim, `root`.
    The range of a derived Dim is computed by mapping `fn` over the range of its `root`.
    """

    @property
    def min(self):
        # assume that self.fn is an increasing function
        # TODO(avik): use sympy value range analysis instead?
        from sympy import Integer

        from torch.utils._sympy.numbers import int_oo

        if self.root.min is -int_oo:  # type: ignore[attr-defined]
            return -int_oo  # fn not needed cuz increasing

        _min_symint = self.fn(Integer(self.root.min))  # type: ignore[attr-defined]
        root = self.root  # type: ignore[attr-defined]
        assert _min_symint >= 0, (
            f"Expected derived min value of {self.__name__} to be >= 0. "
            f"Please specify an appropriate min value for {root.__name__} "
            f"(currently {root.min})."
        )
        return int(_min_symint)

    @property
    def max(self):
        # assume that self.fn is an increasing function
        # TODO(avik): use sympy value range analysis instead?
        from sympy import Integer

        from torch.utils._sympy.numbers import int_oo

        if self.root.max is int_oo:  # type: ignore[attr-defined]
            return int_oo  # fn not needed cuz increasing

        _max_symint = self.fn(Integer(self.root.max))  # type: ignore[attr-defined]
        root = self.root  # type: ignore[attr-defined]
        assert _max_symint <= sys.maxsize - 1, (
            f"Expected derived max value of {self.__name__} to be <= {sys.maxsize - 1}. "
            f"Please specify an appropriate max value for {root.__name__} "
            f"(currently {root.max})."
        )
        return int(_max_symint)

    def _derive(self, fn):
        # We support nesting, e.g., 2*dim + 1.
        # This is implemented by composing operations on the same root.
        # As a consequence, roots are always regular Dims (i.e., not derived Dims).
        return _DerivedDim(
            self._derived_name(fn),
            (int,),
            {"root": self.root, "fn": lambda x: fn(self.fn(x))},  # type: ignore[attr-defined]
        )


[docs]def Dim(name: str, *, min: Optional[int] = None, max: Optional[int] = None): """ :func:`Dim` constructs a type analogous to a named symbolic integer with a range. It can be used to describe multiple possible values of a dynamic tensor dimension. Note that different dynamic dimensions of the same tensor, or of different tensors, can be described by the same type. Args: name (str): Human-readable name for debugging. min (Optional[int]): Minimum possible value of given symbol (inclusive) max (Optional[int]): Maximum possible value of given symbol (inclusive) Returns: A type that can be used in dynamic shape specifications for tensors. """ from torch.utils._sympy.numbers import int_oo _min = 0 if min is None else min _max = int_oo if max is None else max assert _max > _min, f"Cannot create Dim with inconsistent min={min}, max={max}" assert name.isidentifier(), f"Dim name must be a valid identifier, got {name}" dim = _Dim(name, (int,), {"min": _min, "max": _max}) dim.__module__ = getattr( inspect.getmodule(inspect.stack()[1][0]), "__name__", "__main__" ) return dim
Dim.AUTO = _DimHint.AUTO # type: ignore[attr-defined] Dim.STATIC = _DimHint.STATIC # type: ignore[attr-defined] Dim.DYNAMIC = _DimHint.DYNAMIC # type: ignore[attr-defined]
[docs]def dims( *names: str, min: Optional[int] = None, max: Optional[int] = None ) -> tuple[_Dim, ...]: """ Util to create multiple :func:`Dim` types. Returns: A tuple of :func:`Dim` types. """ return tuple(Dim(name, min=min, max=max) for name in names)
@dataclasses.dataclass class _ConstraintTarget: """ This represents input tensor dimensions. """ t_id: int dim: int @dataclasses.dataclass class _Constraint(_ConstraintTarget): """ This represents a Dim describing a constraint target. `name` is the name of the Dim. `constraint_range` contains the min/max bounds of the Dim. """ name: str constraint_range: "StrictMinMaxConstraint" def _clone_with_range(self, lower=0, upper=None): # Import sympy locally from torch.fx.experimental.symbolic_shapes import StrictMinMaxConstraint from torch.utils._sympy.numbers import int_oo from torch.utils._sympy.value_ranges import ValueRanges if upper is None: upper = int_oo constraint_range = StrictMinMaxConstraint( vr=self.constraint_range.vr & ValueRanges(lower=lower, upper=upper), warn_only=False, ) return _Constraint( self.t_id, self.dim, self.name, constraint_range, ) def __ge__(self, lower): return self._clone_with_range(lower=lower) def __gt__(self, lower): return self._clone_with_range(lower=lower + 1) def __le__(self, upper): return self._clone_with_range(upper=upper) def __lt__(self, upper): return self._clone_with_range(upper=upper - 1) def __bool__(self): # NOTE(avik): We do not support compound expressions like a <= x <= b. # This is because Python implicitly desugars them into bool(a <= x) and bool(x <= b), # and moreover, enforces that any overload of __bool__ must return True or False. # FWIW, sympy also raises TypeError in this case. raise TypeError( "Cannot determine truth value of _Constraint. " "If you are trying to combine _Constraint's with logical connectives, " "you can specify them separately instead." ) @property def serializable_spec(self): # We need a serialization compatible format of the constraint so that it # can be savedin the graph module w/o breaking the module serialization. # The saved constraints will be used directly for the post-exporting pass # that converts constraints to runtime assertion. The saved constraints # will not be saved in the serialized module. # TODO: A better way is needed. Currently we use 't_id' to map the constraint, # which is not reliable return { "t_id": self.t_id, "dim": self.dim, "min": self.constraint_range.vr.lower, "max": self.constraint_range.vr.upper, } @dataclasses.dataclass class _PhantomRoot: """ This represents the root of a derived Dim where the root does not directly specify the shape of any input dimension, but the derived Dim does. e.g., the input shapes 2*dim and dim + 1 are related via a "phantom" dim. The fields `name`, `constraint_range`, and `val` carried by a phantom root help create a symbol for it. Any derived dims with this phantom root are backed by expressions over this symbol. """ name: str constraint_range: "StrictMinMaxConstraint" val: int @dataclasses.dataclass class _DerivedConstraint(_ConstraintTarget): """ This represents a derived Dim, whose root is either a regular constraint target (which directly specifies the shape of some input dimension) or a phantom root (which does so indirectly). It can be thought of as a subclass of `_Constraint`, except that it does not support <, <=, >, >= operations. """ name: str constraint_range: "StrictMinMaxConstraint" root: Union[_ConstraintTarget, _PhantomRoot] fn: Callable @property def serializable_spec(self): # same as _Constraint.serializable_spec return { "t_id": self.t_id, "dim": self.dim, "min": self.constraint_range.vr.lower, "max": self.constraint_range.vr.upper, } @dataclasses.dataclass class _RelaxedConstraint(_ConstraintTarget): """ This represents a dim marked with Dim.AUTO/DYNAMIC (i.e. mark_dynamic() or maybe_mark_dynamic()), which leaves relations & min/max ranges for inference, instead of requiring explicit specification. The intention is for constraint violations to not be raised if produce_guards() finds equalities or relations between a _RelaxedConstraint and another type of _Constraint. """ @property def serializable_spec(self): return { "t_id": self.t_id, "dim": self.dim, } Constraint = Union[_Constraint, _DerivedConstraint, _RelaxedConstraint] def _process_equalities( constraint: Constraint, get_sources: Callable[[int, int], list["Source"]], shape_env: "ShapeEnv", names: dict[str, tuple[int, int]], source_pairs: list[tuple["Source", "Source"]], derived_equalities: list[tuple["Source", Union["Source", "Symbol"], Callable]], phantom_symbols: dict[str, "Symbol"], relaxed_sources: set["Source"], ): """ Updates `source_pairs`, `derived_equalities`, and `phantom_symbols` (which become fields of `EqualityConstraint`) based on a given input `constraint`. """ sources = get_sources(constraint.t_id, constraint.dim) if not sources: # empty sources due to unused shapes return source, *other_sources = sources # When t.size()[dim] maps to src0, src1, ..., srcN, we add # constraints that make src0 "equal" to src1, ..., srcN. source_pairs.extend((source, other_source) for other_source in other_sources) if isinstance(constraint, _Constraint): if constraint.name in names: shared_t_id, shared_dim = names[constraint.name] other_sources = get_sources(shared_t_id, shared_dim) source_pairs.extend( (source, other_source) for other_source in other_sources ) else: names[constraint.name] = (constraint.t_id, constraint.dim) elif isinstance(constraint, _DerivedConstraint): # branch based on the root of the _DerivedConstraint if not isinstance(constraint.root, _PhantomRoot): # either root points to an input source root = get_sources(constraint.root.t_id, constraint.root.dim)[0] else: # or root points to a phantom symbol if constraint.root.name in phantom_symbols: root = phantom_symbols[constraint.root.name] else: # create a phantom symbol in the shape env based on the _PhantomRoot root = shape_env.create_symbol( val=constraint.root.val, source=torch._dynamo.source.ConstantSource(constraint.root.name), dynamic_dim=torch.fx.experimental.symbolic_shapes.DimDynamic.DYNAMIC, constraint_dim=constraint.root.constraint_range, ) phantom_symbols[constraint.root.name] = root fn = constraint.fn # A derived equality (source, root, fn) informally corresponds to source = fn(root). # Here source describes an input and root might describe another input or a phantom symbol. derived_equalities.append((source, root, fn)) elif isinstance(constraint, _RelaxedConstraint): relaxed_sources.add(source) def _tree_map_with_path( func: Callable[..., Any], tree: Any, *dynamic_shapes: Any, tree_name: Optional[str] = None, ) -> Any: """ Customized tree_map for mapping pytrees to dynamic_shapes. For built-in types (e.g., standard collections) this behaves exactly like tree_map. OTOH for a user-defined class C registered with pytree, we cannot assume that a C containing tensors can be mapped to a C containing dynamic shapes (i.e., C may not be a polymorphic container). In that case we use the flattened form of C instead. Thus a C(**tensors) that flattens to (**tensors) will map to (**dynamic_shapes). Args: func: function to apply to each (int, float, str, bool, None, torch.Tensor) tree: input pytree dynamic_shapes: zero or more (typically one) dynamic_shapes to match Returns: output pytree mapping func to each (int, float, str, bool, None, torch.Tensor) """ def is_leaf(t): # BUILTIN_TYPES is a subset of SUPPORTED_NODES, the latter being all types # registered with pytree. Types *not* in BUILTIN_TYPES include primitive types # (int, float, str, bool, None, torch.Tensor), which are not in SUPPORTED_NODES, # as well as user-defined classes registered with pytree, which are. return _get_node_type(t) not in BUILTIN_TYPES def f(path, t, *dynamic_shapes): typ = _get_node_type(t) # typ is not in BUILTIN_TYPES if typ in SUPPORTED_NODES: # thus typ is a user-defined class registered with pytree, # in which case flatten and recurse return tree_map_with_path( f, SUPPORTED_NODES[typ].flatten_fn(t)[0], *dynamic_shapes, is_leaf=is_leaf, ) else: return func(path, t, *dynamic_shapes) try: return tree_map_with_path(f, tree, *dynamic_shapes, is_leaf=is_leaf) except ValueError as e: if "mismatch" in e.args[0]: # When PyTree finds a structural mismatch between tree and dynamic_shapes, # the error message is unfortunately quite horrible. Let's fix that. assert dynamic_shapes, "Cannot be a mismatch if there is no dynamic_shapes" assert tree_name, "Must provide a tree_name when there might be a mismatch" def _key(type_, context, i): # derive a PyTree key given the type, context, and child # of a TreeSpec if type_ is dict: return MappingKey(context[i]) if type_ in (list, tuple): assert context is None return SequenceKey(i) raise AssertionError(f"Did not expect type {type_}") def raise_mismatch_error(msg): from torch._dynamo.exc import UserError, UserErrorType raise UserError( UserErrorType.INVALID_INPUT, f"Detected mismatch between the structure of `{tree_name}` and `dynamic_shapes`: {msg}", case_name="dynamic_shapes_validation", ) def _compare(tree, dynamic_shapes, path): # raise an error at the point where tree and dynamic_shapes differ, # including the path to that point and the reason for the difference rendered_path = keystr(path) if isinstance(tree, LeafSpec): return if isinstance(dynamic_shapes, LeafSpec): raise_mismatch_error( f"`{tree_name}{rendered_path}` is a {tree.type}, " f"but `dynamic_shapes{rendered_path}` is not" ) if tree.type != dynamic_shapes.type: raise_mismatch_error( f"`{tree_name}{rendered_path}` is a {tree.type}, " f"but `dynamic_shapes{rendered_path}` is a {dynamic_shapes.type}" ) if len(tree.children_specs) != len(dynamic_shapes.children_specs): raise_mismatch_error( f"`{tree_name}{rendered_path}` has {len(tree.children_specs)} elements, " f"but `dynamic_shapes{rendered_path}` has {len(dynamic_shapes.children_specs)} elements" ) if tree.type is dict: # context, children could be out of order if sorted(tree.context) != sorted(dynamic_shapes.context): raise_mismatch_error( f"`{tree_name}{rendered_path}` has keys {tree.context}, " f"but `dynamic_shapes{rendered_path}` has keys {dynamic_shapes.context}" ) _remap = dict( zip(dynamic_shapes.context, dynamic_shapes.children_specs) ) dynamic_shapes_children_specs = [_remap[k] for k in tree.context] else: dynamic_shapes_children_specs = dynamic_shapes.children_specs for i, (tree_, dynamic_shapes_) in enumerate( zip(tree.children_specs, dynamic_shapes_children_specs) ): _compare( tree_, dynamic_shapes_, path + [_key(tree.type, tree.context, i)], ) _, tree_spec = tree_flatten(tree, is_leaf=is_leaf) for other_tree in dynamic_shapes: _, other_tree_spec = tree_flatten(other_tree, is_leaf) _compare(tree_spec, other_tree_spec, []) raise def _combine_args(f, args, kwargs, _is_torch_jit_trace=False) -> dict[str, Any]: # combine args and kwargs following the signature of f, as it happens # in the body of f when called with *args, **kwargs if isinstance(f, ExportedProgram): f = f.module() if not _is_torch_jit_trace: signature = ( inspect.signature(f.forward) if isinstance(f, torch.nn.Module) else inspect.signature(f) ) kwargs = kwargs if kwargs is not None else {} return signature.bind(*args, **kwargs).arguments return args
[docs]class ShapesCollection: """ Builder for dynamic_shapes. Used to assign dynamic shape specifications to tensors that appear in inputs. This is useful particularly when :func:`args` is a nested input structure, and it's easier to index the input tensors, than to replicate the structure of :func:`args` in the :func:`dynamic_shapes` specification. Example:: args = ({"x": tensor_x, "others": [tensor_y, tensor_z]}) dim = torch.export.Dim(...) dynamic_shapes = torch.export.ShapesCollection() dynamic_shapes[tensor_x] = (dim, dim + 1, 8) dynamic_shapes[tensor_y] = {0: dim * 2} # This is equivalent to the following (now auto-generated): # dynamic_shapes = {"x": (dim, dim + 1, 8), "others": [{0: dim * 2}, None]} torch.export(..., args, dynamic_shapes=dynamic_shapes) """ def __init__(self): self._shapes = {} def __setitem__(self, t, shape): assert isinstance( t, torch.Tensor ), f"Cannot assign shape to non-tensor type {type(t)}" # TODO(avik): check that shape is indeed a Shape t_id = id(t) if t_id in self._shapes: _shape = self._shapes[t_id] assert ( shape == _shape ), f"Shapes assigned to tensor do not match: expected {_shape}, got {shape}" else: self._shapes[id(t)] = shape def __getitem__(self, t): t_id = id(t) if t_id not in self._shapes: self._shapes[t_id] = {} return self._shapes[t_id] def __len__(self): return len(self._shapes)
[docs] def dynamic_shapes(self, m, args, kwargs=None): """ Generates the :func:`dynamic_shapes` pytree structure according to :func:`args` and :func:`kwargs`. """ t_ids = set() def find_shape(path, t): t_id = id(t) if t_id in self._shapes: t_ids.add(t_id) return self._shapes[t_id] else: return None combined_args = _combine_args(m, args, kwargs) dynamic_shapes = _tree_map_with_path(find_shape, combined_args) if any(t_id not in t_ids for t_id in self._shapes): raise ValueError( "Some tensors that were assigned shapes were not found in args. " "Maybe such tensors were copied when passing them as args? " "Maybe such tensors are contained in classes that were not registered with pytree?" ) return dynamic_shapes
def _warn_on_None_dynamic_shape_dimension(): msg = ( "Using None as a dynamic shape dimension is deprecated. " "Please use Dim.STATIC instead" ) # TODO(avik): raise an error in the future log.warning(msg) def _check_dynamic_shapes( combined_args: dict[str, Any], dynamic_shapes: Union[dict[str, Any], tuple[Any], list[Any], None], ): """ Checks the dynamic_shapes specification for correctness, using combined args + kwargs as reference for inputs structure. """ from torch._dynamo.exc import UserError, UserErrorType if dynamic_shapes is None or len(dynamic_shapes) == 0: return if isinstance(dynamic_shapes, (tuple, list)): combined_args = type(dynamic_shapes)(combined_args.values()) # type: ignore[assignment, misc] bounds: dict[str, tuple[int, int]] = {} def check_same_bounds(dim): if dim.__name__ in bounds: min_, max_ = bounds[dim.__name__] if dim.min != min_ or dim.max != max_: this_ = _Dim.readable(dim.__name__, min_, max_) that_ = _Dim.readable(dim.__name__, dim.min, dim.max) raise UserError( UserErrorType.INVALID_INPUT, f"Found different definitions {this_} and {that_} " f"for the same symbolic dimension {dim}!", ) else: bounds[dim.__name__] = (dim.min, dim.max) def check_symbols(path, tensor, shape): if isinstance(shape, dict): for i, dim in shape.items(): if isinstance(dim, _Dim): check_same_bounds(dim) elif dim is None: _warn_on_None_dynamic_shape_dimension() elif not (isinstance(dim, (int, _DimHint))): raise UserError( UserErrorType.INVALID_INPUT, f"Unexpected dimension mapped to index {i} in input tensor shape {shape} " f"specified at `dynamic_shapes{keystr(path)}` " f"(expected None, an int, a Dim, Dim.AUTO, Dim.STATIC, or Dim.DYNAMIC, " f" but got {dim} instead)", case_name="dynamic_shapes_validation", ) elif isinstance(shape, (tuple, list)): for i, dim in enumerate(shape): if isinstance(dim, _Dim): check_same_bounds(dim) elif dim is None: _warn_on_None_dynamic_shape_dimension() elif not (isinstance(dim, (int, _DimHint))): raise UserError( UserErrorType.INVALID_INPUT, f"Unexpected dimension #{i} in input tensor shape {shape} " f"specified at `dynamic_shapes{keystr(path)}` " f"(expected None, an int, a Dim, Dim.AUTO, Dim.STATIC, or Dim.DYNAMIC, " f"but got {dim} instead)", case_name="dynamic_shapes_validation", ) elif shape is not None: raise UserError( UserErrorType.INVALID_INPUT, f"Unexpected input tensor shape {shape} specified at `dynamic_shapes{keystr(path)}` " f"(expected either a list/tuple of dimensions, or a dict mapping indices to dimensions," f" where each dimension is an int, a Dim, Dim.AUTO, Dim.STATIC, or Dim.DYNAMIC)", case_name="dynamic_shapes_validation", ) assert isinstance(dynamic_shapes, (dict, tuple, list)) if isinstance(dynamic_shapes, dict): got_keys = list(dynamic_shapes.keys()) expected_arg_names = list(combined_args.keys()) if sorted(got_keys) != sorted(expected_arg_names): msg = ( f"When `dynamic_shapes` is specified as a dict, its top-level keys " f"must be the arg names {expected_arg_names} of `inputs`, but " f"here they are {got_keys}. " ) if ( len(combined_args) == 1 and expected_arg_names[0] not in got_keys and isinstance(combined_args[expected_arg_names[0]], dict) ): msg += ( "Since here `inputs` is a list/tuple enclosing a single dict, " "maybe you just forgot to enclose `dynamic_shapes` in a list/tuple?" ) else: msg += ( "Alternatively, you could also ignore arg names entirely " "and specify `dynamic_shapes` as a list/tuple matching `inputs`." ) raise UserError( UserErrorType.INVALID_INPUT, msg, case_name="dynamic_shapes_validation" ) def check_shape(path, t, dynamic_shape): if isinstance(t, torch.Tensor): check_symbols(path, t, dynamic_shape) else: if dynamic_shape is not None: rendered_path = keystr(path) raise UserError( UserErrorType.INVALID_INPUT, f"Cannot associate shape {dynamic_shape} specified at `dynamic_shapes{rendered_path}` " f"to non-tensor type {type(t)} at `inputs{rendered_path}` (expected None)", case_name="dynamic_shapes_validation", ) _tree_map_with_path(check_shape, combined_args, dynamic_shapes, tree_name="inputs") def _process_dynamic_shapes( combined_args: dict[str, Any], dynamic_shapes: Union[dict[str, Any], tuple[Any], list[Any], None], ) -> list[Constraint]: """ Reads the dynamic_shapes specification and produces a list of constraints. """ from torch._dynamo.exc import UserError, UserErrorType if dynamic_shapes is None or len(dynamic_shapes) == 0: # we run with dynamic by default, so no need to produce constraints return [] if isinstance(dynamic_shapes, (tuple, list)): combined_args = type(dynamic_shapes)(combined_args.values()) # type: ignore[assignment, misc] # map of Dim names representing input shape dimensions to constraints on them symbols: dict[str, list[Constraint]] = defaultdict(list) # track roots that do not directly represent input shape dimensions phantom_roots: dict[str, _PhantomRoot] = {} derived_constraints_with_phantom_root: list[_DerivedConstraint] = [] # list of constraints to return constraints: list[Constraint] = [] def to_constraint(dim, tensor, i): import sympy from torch.fx.experimental.symbolic_shapes import StrictMinMaxConstraint from torch.utils._sympy.solve import try_solve from torch.utils._sympy.value_ranges import ValueRanges def root_value(): # given tensor.shape[i] is the value of dim = fn(root), # find the value of root symbol = sympy.Symbol(dim.root.__name__, integer=True) expr = dim.fn(symbol) solution = try_solve(sympy.Eq(expr, tensor.shape[i]), symbol) if solution is not None: return int(solution[1]) else: raise UserError( # noqa: B904 UserErrorType.CONSTRAINT_VIOLATION, f"Expected shape[{i}] = {tensor.shape[i]} of input Tensor to be " f"of the form {expr}, where {symbol} is an integer", ) if isinstance(dim, _DerivedDim): # generate a _DerivedConstraint where the root is: # - either a _ConstraintTarget (if dim.root directly describes an input shape) # - or a _PhantomRoot (otherwise) dim_root = dim.root # type: ignore[attr-defined] if dim_root.__name__ in symbols: # root represents an input shape dimension root_constraint = symbols[dim_root.__name__][0] root = _ConstraintTarget( root_constraint.t_id, root_constraint.dim, ) elif dim_root.__name__ not in phantom_roots: # create a phantom root root = _PhantomRoot( # type: ignore[assignment] name=dim_root.__name__, constraint_range=StrictMinMaxConstraint( vr=ValueRanges(lower=dim_root.min, upper=dim_root.max), warn_only=False, ), val=root_value(), ) phantom_roots[dim_root.__name__] = root # type: ignore[assignment] else: root = phantom_roots[dim_root.__name__] # type: ignore[assignment] constraint = _DerivedConstraint( id(tensor), i, dim.__name__, StrictMinMaxConstraint( vr=ValueRanges(lower=dim.min, upper=dim.max), warn_only=False, ), root, dim.fn, # type: ignore[attr-defined] ) if isinstance(root, _PhantomRoot): # NOTE(avik): since we have not processed all inputs yet, we may replace this # with a root that does represent an input shape dimension later (see below) derived_constraints_with_phantom_root.append(constraint) elif isinstance(dim, _StaticDim): constraint = _Constraint( # type: ignore[assignment] id(tensor), i, dim.__name__, StrictMinMaxConstraint( vr=ValueRanges(lower=dim.value, upper=dim.value), warn_only=False # type: ignore[attr-defined] ), ) else: assert isinstance(dim, _Dim) constraint = _Constraint( # type: ignore[assignment] id(tensor), i, dim.__name__, StrictMinMaxConstraint( vr=ValueRanges(lower=dim.min, upper=dim.max), warn_only=False # type: ignore[attr-defined] ), ) return constraint def update_symbols(path, tensor, shape): def _create_static_dim(tensor, i, value): return _StaticDim(str(value), (int,), {"value": value}) # clean out decorators from user side, or previous export call # we also delete these attributes in non_strict_utils.py/make_constraints() tensor._dynamo_weak_dynamic_indices = set() tensor._dynamo_dynamic_indices = set() tensor._dynamo_dynamic_range = set() tensor._dynamo_static_indices = set() tensor._dynamo_unbacked_indices = set() if isinstance(shape, dict): for i, dim in shape.items(): if isinstance(dim, (int, _Dim)): if isinstance(dim, int): dim = _create_static_dim(tensor, i, dim) constraint = to_constraint(dim, tensor, i) symbols[dim.__name__].append(constraint) elif isinstance(dim, _DimHint): if dim == _DimHint.AUTO: torch._dynamo.maybe_mark_dynamic(tensor, i) elif dim == _DimHint.STATIC: torch._dynamo.mark_static(tensor, i) elif dim == _DimHint.DYNAMIC: torch._dynamo.mark_dynamic(tensor, i) constraints.append(_RelaxedConstraint(id(tensor), i)) elif dim is None: torch._dynamo.mark_static(tensor, i) elif isinstance(shape, (tuple, list)): for i, dim in enumerate(shape): if isinstance(dim, (int, _Dim)): if isinstance(dim, int): dim = _create_static_dim(tensor, i, dim) constraint = to_constraint(dim, tensor, i) symbols[dim.__name__].append(constraint) elif isinstance(dim, _DimHint): if dim == _DimHint.AUTO: torch._dynamo.maybe_mark_dynamic(tensor, i) elif dim == _DimHint.STATIC: torch._dynamo.mark_static(tensor, i) elif dim == _DimHint.DYNAMIC: torch._dynamo.mark_dynamic(tensor, i) constraints.append(_RelaxedConstraint(id(tensor), i)) elif dim is None: torch._dynamo.mark_static(tensor, i) elif shape is None: for i in range(tensor.dim()): torch._dynamo.mark_static(tensor, i) def assoc_shape(path, t, dynamic_shape): if isinstance(t, torch.Tensor): update_symbols(path, t, dynamic_shape) _tree_map_with_path(assoc_shape, combined_args, dynamic_shapes, tree_name="inputs") for derived_constraint_with_phantom_root in derived_constraints_with_phantom_root: phantom_root_name = derived_constraint_with_phantom_root.root.name # type: ignore[union-attr] if phantom_root_name in symbols: # We found an input shape dimension corresponding to this name, so we # do not need a phantom symbol for it after all. # NOTE(avik): Overall we want to maintain the invariant that roots that # are phantom symbols are really "phantom," i.e., they cannot be represented # by any input source. This is important when we are deciding derived equalities, # since we can focus our attention exclusively on input sources: deciding # derived equalities involving phantom symbols are, in comparison, trivial. derived_constraint_with_phantom_root.root = symbols[phantom_root_name][0] for dynamic_dims in symbols.values(): constraints.extend(dynamic_dims) return constraints def _get_dim_name_mapping( dynamic_shapes: Union[dict[str, Any], tuple[Any], list[Any], None] ): name_to_dim = {} for dim in tree_flatten( dynamic_shapes, is_leaf=lambda x: isinstance(x, _Dim), )[0]: if dim is None: # NOTE: this must denote a non-Tensor or automatic at this point. continue if isinstance(dim, int): continue elif isinstance(dim, _Dim): name_to_dim[dim.__name__] = dim if isinstance(dim, _DerivedDim): name_to_dim[dim.root.__name__] = dim.root # type: ignore[attr-defined] else: assert isinstance(dim, _DimHint) return name_to_dim
[docs]def refine_dynamic_shapes_from_suggested_fixes( msg: str, dynamic_shapes: Union[dict[str, Any], tuple[Any], list[Any]], ) -> Union[dict[str, Any], tuple[Any], list[Any]]: """ When exporting with :func:`dynamic_shapes`, export may fail with a ConstraintViolation error if the specification doesn't match the constraints inferred from tracing the model. The error message may provide suggested fixes - changes that can be made to :func:`dynamic_shapes` to export successfully. Example ConstraintViolation error message:: Suggested fixes: dim = Dim('dim', min=3, max=6) # this just refines the dim's range dim = 4 # this specializes to a constant dy = dx + 1 # dy was specified as an independent dim, but is actually tied to dx with this relation This is a helper function that takes the ConstraintViolation error message and the original :func:`dynamic_shapes` spec, and returns a new :func:`dynamic_shapes` spec that incorporates the suggested fixes. Example usage:: try: ep = export(mod, args, dynamic_shapes=dynamic_shapes) except torch._dynamo.exc.UserError as exc: new_shapes = refine_dynamic_shapes_from_suggested_fixes( exc.msg, dynamic_shapes ) ep = export(mod, args, dynamic_shapes=new_shapes) """ import re import sympy from torch._dynamo.exc import UserError, UserErrorType from torch.fx.experimental.symbolic_shapes import _is_supported_equivalence try: shape_fixes_msg = msg.split("Suggested fixes:")[1].strip() except Exception as exc: raise UserError( UserErrorType.INVALID_INPUT, "Suggested fixes not found in error message given to refine_dynamic_shapes_from_suggested_fixes()", ) from exc # build shape_fixes dictionary shape_fixes = {} for fix in shape_fixes_msg.split("\n"): fix = fix.strip() if match := re.match(r"(.*) = Dim\('(.*)'.*\)", fix): name = match.group(1) _min, _max = None, None if match_min := re.match(r".* = Dim\('.*', min\=([0-9]+).*\)", fix): _min = int(match_min.group(1)) if match_max := re.match(r".* = Dim\('.*'.*max\=([0-9]+)\)", fix): _max = int(match_max.group(1)) shape_fixes[name] = Dim(name, min=_min, max=_max) else: name, expr = fix.split(" = ") expr = sympy.sympify(expr) if isinstance(expr, sympy.Number): # static, integer shape_fixes[name] = int(expr) else: # relation or derived dim shape_fixes[name] = expr name_to_dim = _get_dim_name_mapping(dynamic_shapes) # track derived dim roots roots: set[str] = set() for k, c in shape_fixes.items(): assert isinstance(c, (int, _Dim, _DerivedDim, sympy.Expr)) if isinstance(c, sympy.Expr): # check dim/derived dim expression assert _is_supported_equivalence(c) shape_fixes[k] = c roots.add(str(next(iter(c.free_symbols)))) if isinstance(c, _DerivedDim): roots.add(c.root.__name__) # type: ignore[attr-defined] # check keys are existing dims or new roots for k, c in shape_fixes.items(): assert k in name_to_dim or k in roots # cache so we don't produce multiple derived dim objects derived_dim_cache: dict[str, _DerivedDim] = {} def apply_fixes(path, dim, dummy): if dim is None or isinstance(dim, int): # not dynamic return dim elif dim.__name__ in shape_fixes: # directly fix fix = shape_fixes[dim.__name__] if isinstance(fix, sympy.Expr): # now derived or related if str(fix) in derived_dim_cache: return derived_dim_cache[str(fix)] else: symbol = next(iter(fix.free_symbols)) # try to locate symbol if symbol.name in shape_fixes: root = shape_fixes[symbol.name] else: assert symbol.name in name_to_dim root = name_to_dim[symbol.name] # figure out value of fix modulus, remainder = sympy.polys.polytools.div(fix, symbol) dim = root if modulus != 1: dim = int(modulus) * dim if remainder != 0: dim = dim + int(remainder) derived_dim_cache[str(fix)] = dim return dim else: return fix elif isinstance(dim, _DerivedDim) and dim.root.__name__ in shape_fixes: # type: ignore[attr-defined] if dim.__name__ in derived_dim_cache: return derived_dim_cache[dim.__name__] else: # evaluate new derived value based on root _dim = dim.fn(shape_fixes[dim.root.__name__]) # type: ignore[attr-defined] derived_dim_cache[dim.__name__] = _dim return _dim return dim # unchanged dim return _tree_map_with_path(apply_fixes, dynamic_shapes, dynamic_shapes)

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy