Shortcuts

Source code for torch.nn.init

# mypy: allow-untyped-defs
"""This file contains utilities for initializing neural network parameters."""
import math
import warnings
from typing import Optional as _Optional

import torch
from torch import Tensor


# These no_grad_* functions are necessary as wrappers around the parts of these
# functions that use `with torch.no_grad()`. The JIT doesn't support context
# managers, so these need to be implemented as builtins. Using these wrappers
# lets us keep those builtins small and re-usable.
def _no_grad_uniform_(tensor, a, b, generator=None):
    with torch.no_grad():
        return tensor.uniform_(a, b, generator=generator)


def _no_grad_normal_(tensor, mean, std, generator=None):
    with torch.no_grad():
        return tensor.normal_(mean, std, generator=generator)


def _no_grad_trunc_normal_(tensor, mean, std, a, b, generator=None):
    # Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf
    def norm_cdf(x):
        # Computes standard normal cumulative distribution function
        return (1.0 + math.erf(x / math.sqrt(2.0))) / 2.0

    if (mean < a - 2 * std) or (mean > b + 2 * std):
        warnings.warn(
            "mean is more than 2 std from [a, b] in nn.init.trunc_normal_. "
            "The distribution of values may be incorrect.",
            stacklevel=2,
        )

    with torch.no_grad():
        # Values are generated by using a truncated uniform distribution and
        # then using the inverse CDF for the normal distribution.
        # Get upper and lower cdf values
        l = norm_cdf((a - mean) / std)
        u = norm_cdf((b - mean) / std)

        # Uniformly fill tensor with values from [l, u], then translate to
        # [2l-1, 2u-1].
        tensor.uniform_(2 * l - 1, 2 * u - 1, generator=generator)

        # Use inverse cdf transform for normal distribution to get truncated
        # standard normal
        tensor.erfinv_()

        # Transform to proper mean, std
        tensor.mul_(std * math.sqrt(2.0))
        tensor.add_(mean)

        # Clamp to ensure it's in the proper range
        tensor.clamp_(min=a, max=b)
        return tensor


def _no_grad_fill_(tensor, val):
    with torch.no_grad():
        return tensor.fill_(val)


def _no_grad_zero_(tensor):
    with torch.no_grad():
        return tensor.zero_()


[docs]def calculate_gain(nonlinearity, param=None): r"""Return the recommended gain value for the given nonlinearity function. The values are as follows: ================= ==================================================== nonlinearity gain ================= ==================================================== Linear / Identity :math:`1` Conv{1,2,3}D :math:`1` Sigmoid :math:`1` Tanh :math:`\frac{5}{3}` ReLU :math:`\sqrt{2}` Leaky Relu :math:`\sqrt{\frac{2}{1 + \text{negative\_slope}^2}}` SELU :math:`\frac{3}{4}` ================= ==================================================== .. warning:: In order to implement `Self-Normalizing Neural Networks`_ , you should use ``nonlinearity='linear'`` instead of ``nonlinearity='selu'``. This gives the initial weights a variance of ``1 / N``, which is necessary to induce a stable fixed point in the forward pass. In contrast, the default gain for ``SELU`` sacrifices the normalization effect for more stable gradient flow in rectangular layers. Args: nonlinearity: the non-linear function (`nn.functional` name) param: optional parameter for the non-linear function Examples: >>> gain = nn.init.calculate_gain('leaky_relu', 0.2) # leaky_relu with negative_slope=0.2 .. _Self-Normalizing Neural Networks: https://papers.nips.cc/paper/2017/hash/5d44ee6f2c3f71b73125876103c8f6c4-Abstract.html """ linear_fns = [ "linear", "conv1d", "conv2d", "conv3d", "conv_transpose1d", "conv_transpose2d", "conv_transpose3d", ] if nonlinearity in linear_fns or nonlinearity == "sigmoid": return 1 elif nonlinearity == "tanh": return 5.0 / 3 elif nonlinearity == "relu": return math.sqrt(2.0) elif nonlinearity == "leaky_relu": if param is None: negative_slope = 0.01 elif ( not isinstance(param, bool) and isinstance(param, int) or isinstance(param, float) ): # True/False are instances of int, hence check above negative_slope = param else: raise ValueError(f"negative_slope {param} not a valid number") return math.sqrt(2.0 / (1 + negative_slope**2)) elif nonlinearity == "selu": return ( 3.0 / 4 ) # Value found empirically (https://github.com/pytorch/pytorch/pull/50664) else: raise ValueError(f"Unsupported nonlinearity {nonlinearity}")
[docs]def uniform_( tensor: Tensor, a: float = 0.0, b: float = 1.0, generator: _Optional[torch.Generator] = None, ) -> Tensor: r"""Fill the input Tensor with values drawn from the uniform distribution. :math:`\mathcal{U}(a, b)`. Args: tensor: an n-dimensional `torch.Tensor` a: the lower bound of the uniform distribution b: the upper bound of the uniform distribution generator: the torch Generator to sample from (default: None) Examples: >>> w = torch.empty(3, 5) >>> nn.init.uniform_(w) """ if torch.overrides.has_torch_function_variadic(tensor): return torch.overrides.handle_torch_function( uniform_, (tensor,), tensor=tensor, a=a, b=b, generator=generator ) return _no_grad_uniform_(tensor, a, b, generator)
[docs]def normal_( tensor: Tensor, mean: float = 0.0, std: float = 1.0, generator: _Optional[torch.Generator] = None, ) -> Tensor: r"""Fill the input Tensor with values drawn from the normal distribution. :math:`\mathcal{N}(\text{mean}, \text{std}^2)`. Args: tensor: an n-dimensional `torch.Tensor` mean: the mean of the normal distribution std: the standard deviation of the normal distribution generator: the torch Generator to sample from (default: None) Examples: >>> w = torch.empty(3, 5) >>> nn.init.normal_(w) """ if torch.overrides.has_torch_function_variadic(tensor): return torch.overrides.handle_torch_function( normal_, (tensor,), tensor=tensor, mean=mean, std=std, generator=generator ) return _no_grad_normal_(tensor, mean, std, generator)
[docs]def trunc_normal_( tensor: Tensor, mean: float = 0.0, std: float = 1.0, a: float = -2.0, b: float = 2.0, generator: _Optional[torch.Generator] = None, ) -> Tensor: r"""Fill the input Tensor with values drawn from a truncated normal distribution. The values are effectively drawn from the normal distribution :math:`\mathcal{N}(\text{mean}, \text{std}^2)` with values outside :math:`[a, b]` redrawn until they are within the bounds. The method used for generating the random values works best when :math:`a \leq \text{mean} \leq b`. Args: tensor: an n-dimensional `torch.Tensor` mean: the mean of the normal distribution std: the standard deviation of the normal distribution a: the minimum cutoff value b: the maximum cutoff value generator: the torch Generator to sample from (default: None) Examples: >>> w = torch.empty(3, 5) >>> nn.init.trunc_normal_(w) """ return _no_grad_trunc_normal_(tensor, mean, std, a, b, generator=generator)
[docs]def constant_(tensor: Tensor, val: float) -> Tensor: r"""Fill the input Tensor with the value :math:`\text{val}`. Args: tensor: an n-dimensional `torch.Tensor` val: the value to fill the tensor with Examples: >>> w = torch.empty(3, 5) >>> nn.init.constant_(w, 0.3) """ if torch.overrides.has_torch_function_variadic(tensor): return torch.overrides.handle_torch_function( constant_, (tensor,), tensor=tensor, val=val ) return _no_grad_fill_(tensor, val)
[docs]def ones_(tensor: Tensor) -> Tensor: r"""Fill the input Tensor with the scalar value `1`. Args: tensor: an n-dimensional `torch.Tensor` Examples: >>> w = torch.empty(3, 5) >>> nn.init.ones_(w) """ return _no_grad_fill_(tensor, 1.0)
[docs]def zeros_(tensor: Tensor) -> Tensor: r"""Fill the input Tensor with the scalar value `0`. Args: tensor: an n-dimensional `torch.Tensor` Examples: >>> w = torch.empty(3, 5) >>> nn.init.zeros_(w) """ return _no_grad_zero_(tensor)
[docs]def eye_(tensor): r"""Fill the 2-dimensional input `Tensor` with the identity matrix. Preserves the identity of the inputs in `Linear` layers, where as many inputs are preserved as possible. Args: tensor: a 2-dimensional `torch.Tensor` Examples: >>> w = torch.empty(3, 5) >>> nn.init.eye_(w) """ if tensor.ndimension() != 2: raise ValueError("Only tensors with 2 dimensions are supported") with torch.no_grad(): torch.eye(*tensor.shape, out=tensor, requires_grad=tensor.requires_grad) return tensor
[docs]def dirac_(tensor, groups=1): r"""Fill the {3, 4, 5}-dimensional input `Tensor` with the Dirac delta function. Preserves the identity of the inputs in `Convolutional` layers, where as many input channels are preserved as possible. In case of groups>1, each group of channels preserves identity Args: tensor: a {3, 4, 5}-dimensional `torch.Tensor` groups (int, optional): number of groups in the conv layer (default: 1) Examples: >>> w = torch.empty(3, 16, 5, 5) >>> nn.init.dirac_(w) >>> w = torch.empty(3, 24, 5, 5) >>> nn.init.dirac_(w, 3) """ dimensions = tensor.ndimension() if dimensions not in [3, 4, 5]: raise ValueError("Only tensors with 3, 4, or 5 dimensions are supported") sizes = tensor.size() if sizes[0] % groups != 0: raise ValueError("dim 0 must be divisible by groups") out_chans_per_grp = sizes[0] // groups min_dim = min(out_chans_per_grp, sizes[1]) with torch.no_grad(): tensor.zero_() for g in range(groups): for d in range(min_dim): if dimensions == 3: # Temporal convolution tensor[g * out_chans_per_grp + d, d, tensor.size(2) // 2] = 1 elif dimensions == 4: # Spatial convolution tensor[ g * out_chans_per_grp + d, d, tensor.size(2) // 2, tensor.size(3) // 2, ] = 1 else: # Volumetric convolution tensor[ g * out_chans_per_grp + d, d, tensor.size(2) // 2, tensor.size(3) // 2, tensor.size(4) // 2, ] = 1 return tensor
def _calculate_fan_in_and_fan_out(tensor): dimensions = tensor.dim() if dimensions < 2: raise ValueError( "Fan in and fan out can not be computed for tensor with fewer than 2 dimensions" ) num_input_fmaps = tensor.size(1) num_output_fmaps = tensor.size(0) receptive_field_size = 1 if tensor.dim() > 2: # math.prod is not always available, accumulate the product manually # we could use functools.reduce but that is not supported by TorchScript for s in tensor.shape[2:]: receptive_field_size *= s fan_in = num_input_fmaps * receptive_field_size fan_out = num_output_fmaps * receptive_field_size return fan_in, fan_out
[docs]def xavier_uniform_( tensor: Tensor, gain: float = 1.0, generator: _Optional[torch.Generator] = None, ) -> Tensor: r"""Fill the input `Tensor` with values using a Xavier uniform distribution. The method is described in `Understanding the difficulty of training deep feedforward neural networks` - Glorot, X. & Bengio, Y. (2010). The resulting tensor will have values sampled from :math:`\mathcal{U}(-a, a)` where .. math:: a = \text{gain} \times \sqrt{\frac{6}{\text{fan\_in} + \text{fan\_out}}} Also known as Glorot initialization. Args: tensor: an n-dimensional `torch.Tensor` gain: an optional scaling factor generator: the torch Generator to sample from (default: None) Examples: >>> w = torch.empty(3, 5) >>> nn.init.xavier_uniform_(w, gain=nn.init.calculate_gain('relu')) Note: Be aware that ``fan_in`` and ``fan_out`` are calculated assuming that the weight matrix is used in a transposed manner, (i.e., ``x @ w.T`` in ``Linear`` layers, where ``w.shape = [fan_out, fan_in]``). This is important for correct initialization. If you plan to use ``x @ w``, where ``w.shape = [fan_in, fan_out]``, pass in a transposed weight matrix, i.e. ``nn.init.xavier_uniform_(w.T, ...)``. """ fan_in, fan_out = _calculate_fan_in_and_fan_out(tensor) std = gain * math.sqrt(2.0 / float(fan_in + fan_out)) a = math.sqrt(3.0) * std # Calculate uniform bounds from standard deviation return _no_grad_uniform_(tensor, -a, a, generator)
[docs]def xavier_normal_( tensor: Tensor, gain: float = 1.0, generator: _Optional[torch.Generator] = None, ) -> Tensor: r"""Fill the input `Tensor` with values using a Xavier normal distribution. The method is described in `Understanding the difficulty of training deep feedforward neural networks` - Glorot, X. & Bengio, Y. (2010). The resulting tensor will have values sampled from :math:`\mathcal{N}(0, \text{std}^2)` where .. math:: \text{std} = \text{gain} \times \sqrt{\frac{2}{\text{fan\_in} + \text{fan\_out}}} Also known as Glorot initialization. Args: tensor: an n-dimensional `torch.Tensor` gain: an optional scaling factor generator: the torch Generator to sample from (default: None) Examples: >>> w = torch.empty(3, 5) >>> nn.init.xavier_normal_(w) Note: Be aware that ``fan_in`` and ``fan_out`` are calculated assuming that the weight matrix is used in a transposed manner, (i.e., ``x @ w.T`` in ``Linear`` layers, where ``w.shape = [fan_out, fan_in]``). This is important for correct initialization. If you plan to use ``x @ w``, where ``w.shape = [fan_in, fan_out]``, pass in a transposed weight matrix, i.e. ``nn.init.xavier_normal_(w.T, ...)``. """ fan_in, fan_out = _calculate_fan_in_and_fan_out(tensor) std = gain * math.sqrt(2.0 / float(fan_in + fan_out)) return _no_grad_normal_(tensor, 0.0, std, generator)
def _calculate_correct_fan(tensor, mode): mode = mode.lower() valid_modes = ["fan_in", "fan_out"] if mode not in valid_modes: raise ValueError(f"Mode {mode} not supported, please use one of {valid_modes}") fan_in, fan_out = _calculate_fan_in_and_fan_out(tensor) return fan_in if mode == "fan_in" else fan_out
[docs]def kaiming_uniform_( tensor: Tensor, a: float = 0, mode: str = "fan_in", nonlinearity: str = "leaky_relu", generator: _Optional[torch.Generator] = None, ): r"""Fill the input `Tensor` with values using a Kaiming uniform distribution. The method is described in `Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification` - He, K. et al. (2015). The resulting tensor will have values sampled from :math:`\mathcal{U}(-\text{bound}, \text{bound})` where .. math:: \text{bound} = \text{gain} \times \sqrt{\frac{3}{\text{fan\_mode}}} Also known as He initialization. Args: tensor: an n-dimensional `torch.Tensor` a: the negative slope of the rectifier used after this layer (only used with ``'leaky_relu'``) mode: either ``'fan_in'`` (default) or ``'fan_out'``. Choosing ``'fan_in'`` preserves the magnitude of the variance of the weights in the forward pass. Choosing ``'fan_out'`` preserves the magnitudes in the backwards pass. nonlinearity: the non-linear function (`nn.functional` name), recommended to use only with ``'relu'`` or ``'leaky_relu'`` (default). generator: the torch Generator to sample from (default: None) Examples: >>> w = torch.empty(3, 5) >>> nn.init.kaiming_uniform_(w, mode='fan_in', nonlinearity='relu') Note: Be aware that ``fan_in`` and ``fan_out`` are calculated assuming that the weight matrix is used in a transposed manner, (i.e., ``x @ w.T`` in ``Linear`` layers, where ``w.shape = [fan_out, fan_in]``). This is important for correct initialization. If you plan to use ``x @ w``, where ``w.shape = [fan_in, fan_out]``, pass in a transposed weight matrix, i.e. ``nn.init.kaiming_uniform_(w.T, ...)``. """ if torch.overrides.has_torch_function_variadic(tensor): return torch.overrides.handle_torch_function( kaiming_uniform_, (tensor,), tensor=tensor, a=a, mode=mode, nonlinearity=nonlinearity, generator=generator, ) if 0 in tensor.shape: warnings.warn("Initializing zero-element tensors is a no-op") return tensor fan = _calculate_correct_fan(tensor, mode) gain = calculate_gain(nonlinearity, a) std = gain / math.sqrt(fan) bound = math.sqrt(3.0) * std # Calculate uniform bounds from standard deviation with torch.no_grad(): return tensor.uniform_(-bound, bound, generator=generator)
[docs]def kaiming_normal_( tensor: Tensor, a: float = 0, mode: str = "fan_in", nonlinearity: str = "leaky_relu", generator: _Optional[torch.Generator] = None, ): r"""Fill the input `Tensor` with values using a Kaiming normal distribution. The method is described in `Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification` - He, K. et al. (2015). The resulting tensor will have values sampled from :math:`\mathcal{N}(0, \text{std}^2)` where .. math:: \text{std} = \frac{\text{gain}}{\sqrt{\text{fan\_mode}}} Also known as He initialization. Args: tensor: an n-dimensional `torch.Tensor` a: the negative slope of the rectifier used after this layer (only used with ``'leaky_relu'``) mode: either ``'fan_in'`` (default) or ``'fan_out'``. Choosing ``'fan_in'`` preserves the magnitude of the variance of the weights in the forward pass. Choosing ``'fan_out'`` preserves the magnitudes in the backwards pass. nonlinearity: the non-linear function (`nn.functional` name), recommended to use only with ``'relu'`` or ``'leaky_relu'`` (default). generator: the torch Generator to sample from (default: None) Examples: >>> w = torch.empty(3, 5) >>> nn.init.kaiming_normal_(w, mode='fan_out', nonlinearity='relu') Note: Be aware that ``fan_in`` and ``fan_out`` are calculated assuming that the weight matrix is used in a transposed manner, (i.e., ``x @ w.T`` in ``Linear`` layers, where ``w.shape = [fan_out, fan_in]``). This is important for correct initialization. If you plan to use ``x @ w``, where ``w.shape = [fan_in, fan_out]``, pass in a transposed weight matrix, i.e. ``nn.init.kaiming_normal_(w.T, ...)``. """ if 0 in tensor.shape: warnings.warn("Initializing zero-element tensors is a no-op") return tensor fan = _calculate_correct_fan(tensor, mode) gain = calculate_gain(nonlinearity, a) std = gain / math.sqrt(fan) with torch.no_grad(): return tensor.normal_(0, std, generator=generator)
[docs]def orthogonal_( tensor, gain=1, generator: _Optional[torch.Generator] = None, ): r"""Fill the input `Tensor` with a (semi) orthogonal matrix. Described in `Exact solutions to the nonlinear dynamics of learning in deep linear neural networks` - Saxe, A. et al. (2013). The input tensor must have at least 2 dimensions, and for tensors with more than 2 dimensions the trailing dimensions are flattened. Args: tensor: an n-dimensional `torch.Tensor`, where :math:`n \geq 2` gain: optional scaling factor generator: the torch Generator to sample from (default: None) Examples: >>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_LAPACK) >>> w = torch.empty(3, 5) >>> nn.init.orthogonal_(w) """ if tensor.ndimension() < 2: raise ValueError("Only tensors with 2 or more dimensions are supported") if tensor.numel() == 0: # no-op return tensor rows = tensor.size(0) cols = tensor.numel() // rows flattened = tensor.new_empty((rows, cols)).normal_(0, 1, generator=generator) if rows < cols: flattened.t_() # Compute the qr factorization q, r = torch.linalg.qr(flattened) # Make Q uniform according to https://arxiv.org/pdf/math-ph/0609050.pdf d = torch.diag(r, 0) ph = d.sign() q *= ph if rows < cols: q.t_() with torch.no_grad(): tensor.view_as(q).copy_(q) tensor.mul_(gain) return tensor
[docs]def sparse_( tensor, sparsity, std=0.01, generator: _Optional[torch.Generator] = None, ): r"""Fill the 2D input `Tensor` as a sparse matrix. The non-zero elements will be drawn from the normal distribution :math:`\mathcal{N}(0, 0.01)`, as described in `Deep learning via Hessian-free optimization` - Martens, J. (2010). Args: tensor: an n-dimensional `torch.Tensor` sparsity: The fraction of elements in each column to be set to zero std: the standard deviation of the normal distribution used to generate the non-zero values generator: the torch Generator to sample from (default: None) Examples: >>> w = torch.empty(3, 5) >>> nn.init.sparse_(w, sparsity=0.1) """ if tensor.ndimension() != 2: raise ValueError("Only tensors with 2 dimensions are supported") rows, cols = tensor.shape num_zeros = int(math.ceil(sparsity * rows)) with torch.no_grad(): tensor.normal_(0, std, generator=generator) for col_idx in range(cols): row_indices = torch.randperm(rows) zero_indices = row_indices[:num_zeros] tensor[zero_indices, col_idx] = 0 return tensor
# for backward compatibility def _make_deprecate(meth): new_name = meth.__name__ old_name = new_name[:-1] def deprecated_init(*args, **kwargs): warnings.warn( f"`nn.init.{old_name}` is now deprecated in favor of `nn.init.{new_name}`.", FutureWarning, stacklevel=2, ) return meth(*args, **kwargs) deprecated_init.__doc__ = rf""" {old_name}(...) .. warning:: This method is now deprecated in favor of :func:`torch.nn.init.{new_name}`. See :func:`~torch.nn.init.{new_name}` for details.""" deprecated_init.__name__ = old_name return deprecated_init uniform = _make_deprecate(uniform_) normal = _make_deprecate(normal_) constant = _make_deprecate(constant_) eye = _make_deprecate(eye_) dirac = _make_deprecate(dirac_) xavier_uniform = _make_deprecate(xavier_uniform_) xavier_normal = _make_deprecate(xavier_normal_) kaiming_uniform = _make_deprecate(kaiming_uniform_) kaiming_normal = _make_deprecate(kaiming_normal_) orthogonal = _make_deprecate(orthogonal_) sparse = _make_deprecate(sparse_)

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy