Shortcuts

Source code for torch.optim.adam

# mypy: allow-untyped-defs
from typing import cast, Optional, Union

import torch
from torch import Tensor

from .optimizer import (
    _capturable_doc,
    _default_to_fused_or_foreach,
    _device_dtype_check_for_fused,
    _differentiable_doc,
    _disable_dynamo_if_unsupported,
    _foreach_doc,
    _fused_doc,
    _get_capturable_supported_devices,
    _get_scalar_dtype,
    _get_value,
    _maximize_doc,
    _params_doc,
    _stack_if_compiling,
    _use_grad_for_differentiable,
    _view_as_real,
    DeviceDict,
    DeviceDtypeDict,
    Optimizer,
    ParamsT,
)


__all__ = ["Adam", "adam"]


[docs]class Adam(Optimizer): def __init__( self, params: ParamsT, lr: Union[float, Tensor] = 1e-3, betas: tuple[Union[float, Tensor], Union[float, Tensor]] = (0.9, 0.999), eps: float = 1e-8, weight_decay: float = 0, amsgrad: bool = False, *, foreach: Optional[bool] = None, maximize: bool = False, capturable: bool = False, differentiable: bool = False, fused: Optional[bool] = None, decoupled_weight_decay: bool = False, ): if isinstance(lr, Tensor): if foreach and not capturable: raise ValueError( "lr as a Tensor is not supported for capturable=False and foreach=True" ) if lr.numel() != 1: raise ValueError("Tensor lr must be 1-element") if not 0.0 <= lr: raise ValueError(f"Invalid learning rate: {lr}") if not 0.0 <= eps: raise ValueError(f"Invalid epsilon value: {eps}") if not 0.0 <= betas[0] < 1.0: raise ValueError(f"Invalid beta parameter at index 0: {betas[0]}") if not 0.0 <= betas[1] < 1.0: raise ValueError(f"Invalid beta parameter at index 1: {betas[1]}") if not 0.0 <= weight_decay: raise ValueError(f"Invalid weight_decay value: {weight_decay}") if not ( (isinstance(betas[0], float) and isinstance(betas[1], float)) or (isinstance(betas[0], Tensor) and isinstance(betas[1], Tensor)) ): raise ValueError("betas must be either both floats or both Tensors") if isinstance(betas[0], Tensor): if not capturable and foreach: raise ValueError( "betas[0] as a Tensor is not supported for capturable=False and foreach=True" ) if betas[0].numel() != 1: raise ValueError("Tensor betas[0] must be 1-element") if isinstance(betas[1], Tensor): if not capturable and foreach: raise ValueError( "betas[1] as a Tensor is not supported for capturable=False and foreach=True" ) if betas[1].numel() != 1: raise ValueError("Tensor betas[1] must be 1-element") defaults = dict( lr=lr, betas=betas, eps=eps, weight_decay=weight_decay, amsgrad=amsgrad, maximize=maximize, foreach=foreach, capturable=capturable, differentiable=differentiable, fused=fused, decoupled_weight_decay=decoupled_weight_decay, ) super().__init__(params, defaults) if fused: if differentiable: raise RuntimeError("`fused` does not support `differentiable`") self._step_supports_amp_scaling = True # TODO(crcrpar): [low prec params & their higher prec copy] # Support AMP with FP16/BF16 model params which would need # higher prec copy of params to do update math in higher prec to # alleviate the loss of information. if foreach: raise RuntimeError("`fused` and `foreach` cannot be `True` together.") def __setstate__(self, state): super().__setstate__(state) for group in self.param_groups: group.setdefault("amsgrad", False) group.setdefault("maximize", False) group.setdefault("foreach", None) group.setdefault("capturable", False) group.setdefault("differentiable", False) group.setdefault("decoupled_weight_decay", False) fused = group.setdefault("fused", None) for p in group["params"]: p_state = self.state.get(p, []) if len(p_state) != 0 and not torch.is_tensor(p_state["step"]): step_val = float(p_state["step"]) p_state["step"] = ( torch.tensor( step_val, dtype=_get_scalar_dtype(is_fused=fused), device=p.device, ) if group["capturable"] or group["fused"] else torch.tensor(step_val, dtype=_get_scalar_dtype()) ) def _init_group( self, group, params_with_grad, grads, exp_avgs, exp_avg_sqs, max_exp_avg_sqs, state_steps, ): has_complex = False for p in group["params"]: if p.grad is not None: has_complex |= torch.is_complex(p) params_with_grad.append(p) if p.grad.is_sparse: raise RuntimeError( "Adam does not support sparse gradients, please consider SparseAdam instead" ) grads.append(p.grad) state = self.state[p] # Lazy state initialization if len(state) == 0: if group["fused"]: _device_dtype_check_for_fused(p) # note(crcrpar): [special device hosting for step] # Deliberately host `step` on CPU if both capturable and fused are off. # This is because kernel launches are costly on CUDA and XLA. state["step"] = ( torch.zeros( (), dtype=_get_scalar_dtype(is_fused=group["fused"]), device=p.device, ) if group["capturable"] or group["fused"] else torch.tensor(0.0, dtype=_get_scalar_dtype()) ) # Exponential moving average of gradient values state["exp_avg"] = torch.zeros_like( p, memory_format=torch.preserve_format ) # Exponential moving average of squared gradient values state["exp_avg_sq"] = torch.zeros_like( p, memory_format=torch.preserve_format ) if group["amsgrad"]: # Maintains max of all exp. moving avg. of sq. grad. values state["max_exp_avg_sq"] = torch.zeros_like( p, memory_format=torch.preserve_format ) exp_avgs.append(state["exp_avg"]) exp_avg_sqs.append(state["exp_avg_sq"]) if group["amsgrad"]: max_exp_avg_sqs.append(state["max_exp_avg_sq"]) if group["differentiable"] and state["step"].requires_grad: raise RuntimeError( "`requires_grad` is not supported for `step` in differentiable mode" ) # Foreach without capturable does not support a tensor lr if ( group["foreach"] and torch.is_tensor(group["lr"]) and not group["capturable"] ): raise RuntimeError( "lr as a Tensor is not supported for capturable=False and foreach=True" ) state_steps.append(state["step"]) return has_complex
[docs] @_use_grad_for_differentiable def step(self, closure=None): """Perform a single optimization step. Args: closure (Callable, optional): A closure that reevaluates the model and returns the loss. """ self._cuda_graph_capture_health_check() loss = None if closure is not None: with torch.enable_grad(): loss = closure() for group in self.param_groups: params_with_grad: list[Tensor] = [] grads: list[Tensor] = [] exp_avgs: list[Tensor] = [] exp_avg_sqs: list[Tensor] = [] max_exp_avg_sqs: list[Tensor] = [] state_steps: list[Tensor] = [] beta1, beta2 = group["betas"] has_complex = self._init_group( group, params_with_grad, grads, exp_avgs, exp_avg_sqs, max_exp_avg_sqs, state_steps, ) adam( params_with_grad, grads, exp_avgs, exp_avg_sqs, max_exp_avg_sqs, state_steps, amsgrad=group["amsgrad"], has_complex=has_complex, beta1=beta1, beta2=beta2, lr=group["lr"], weight_decay=group["weight_decay"], eps=group["eps"], maximize=group["maximize"], foreach=group["foreach"], capturable=group["capturable"], differentiable=group["differentiable"], fused=group["fused"], grad_scale=getattr(self, "grad_scale", None), found_inf=getattr(self, "found_inf", None), decoupled_weight_decay=group["decoupled_weight_decay"], ) return loss
Adam.__doc__ = ( r"""Implements Adam algorithm. .. math:: \begin{aligned} &\rule{110mm}{0.4pt} \\ &\textbf{input} : \gamma \text{ (lr)}, \beta_1, \beta_2 \text{ (betas)},\theta_0 \text{ (params)},f(\theta) \text{ (objective)} \\ &\hspace{13mm} \lambda \text{ (weight decay)}, \: \textit{amsgrad}, \:\textit{maximize}, \: \epsilon \text{ (epsilon)} \\ &\textbf{initialize} : m_0 \leftarrow 0 \text{ ( first moment)}, v_0\leftarrow 0 \text{ (second moment)},\: v_0^{max}\leftarrow 0 \\[-1.ex] &\rule{110mm}{0.4pt} \\ &\textbf{for} \: t=1 \: \textbf{to} \: \ldots \: \textbf{do} \\ &\hspace{5mm}\textbf{if} \: \textit{maximize}: \\ &\hspace{10mm}g_t \leftarrow -\nabla_{\theta} f_t (\theta_{t-1}) \\ &\hspace{5mm}\textbf{else} \\ &\hspace{10mm}g_t \leftarrow \nabla_{\theta} f_t (\theta_{t-1}) \\ &\hspace{5mm}\textbf{if} \: \lambda \neq 0 \\ &\hspace{10mm} g_t \leftarrow g_t + \lambda \theta_{t-1} \\ &\hspace{5mm}m_t \leftarrow \beta_1 m_{t-1} + (1 - \beta_1) g_t \\ &\hspace{5mm}v_t \leftarrow \beta_2 v_{t-1} + (1-\beta_2) g^2_t \\ &\hspace{5mm}\widehat{m_t} \leftarrow m_t/\big(1-\beta_1^t \big) \\ &\hspace{5mm}\textbf{if} \: amsgrad \\ &\hspace{10mm} v_t^{max} \leftarrow \mathrm{max}(v_{t-1}^{max},v_t) \\ &\hspace{10mm}\widehat{v_t} \leftarrow v_t^{max}/\big(1-\beta_2^t \big) \\ &\hspace{5mm}\textbf{else} \\ &\hspace{10mm}\widehat{v_t} \leftarrow v_t/\big(1-\beta_2^t \big) \\ &\hspace{5mm}\theta_t \leftarrow \theta_{t-1} - \gamma \widehat{m_t}/ \big(\sqrt{\widehat{v_t}} + \epsilon \big) \\ &\rule{110mm}{0.4pt} \\[-1.ex] &\bf{return} \: \theta_t \\[-1.ex] &\rule{110mm}{0.4pt} \\[-1.ex] \end{aligned} For further details regarding the algorithm we refer to `Adam: A Method for Stochastic Optimization`_. """ + rf""" Args: {_params_doc} lr (float, Tensor, optional): learning rate (default: 1e-3). A tensor LR is not yet supported for all our implementations. Please use a float LR if you are not also specifying fused=True or capturable=True. betas (Tuple[float, float], optional): coefficients used for computing running averages of gradient and its square (default: (0.9, 0.999)) eps (float, optional): term added to the denominator to improve numerical stability (default: 1e-8) weight_decay (float, optional): weight decay (L2 penalty) (default: 0) decoupled_weight_decay (bool, optional): if True, this optimizer is equivalent to AdamW and the algorithm will not accumulate weight decay in the momentum nor variance. (default: False) amsgrad (bool, optional): whether to use the AMSGrad variant of this algorithm from the paper `On the Convergence of Adam and Beyond`_ (default: False) {_foreach_doc} {_maximize_doc} {_capturable_doc} {_differentiable_doc} {_fused_doc} .. Note:: A prototype implementation of Adam and AdamW for MPS supports `torch.float32` and `torch.float16`. .. _Adam\: A Method for Stochastic Optimization: https://arxiv.org/abs/1412.6980 .. _On the Convergence of Adam and Beyond: https://openreview.net/forum?id=ryQu7f-RZ """ ) def _single_tensor_adam( params: list[Tensor], grads: list[Tensor], exp_avgs: list[Tensor], exp_avg_sqs: list[Tensor], max_exp_avg_sqs: list[Tensor], state_steps: list[Tensor], grad_scale: Optional[Tensor], found_inf: Optional[Tensor], *, amsgrad: bool, has_complex: bool, beta1: Union[float, Tensor], beta2: Union[float, Tensor], lr: Union[float, Tensor], weight_decay: float, eps: float, maximize: bool, capturable: bool, differentiable: bool, decoupled_weight_decay: bool, ): assert grad_scale is None and found_inf is None if torch.jit.is_scripting(): # this assert is due to JIT being dumb and not realizing that the ops below # have overloads to handle both float and Tensor lrs, so we just assert it's # a float since most people using JIT are using floats assert isinstance(lr, float) assert isinstance(beta1, float) assert isinstance(beta2, float) # We only shuffle around the beta when it is a Tensor, otherwise, we prefer # treating it as a scalar. # Note: ensure type declaration is under conditional check for isinstance # or else torchscript will get cranky about the DeviceDict type. if isinstance(beta1, Tensor): beta1_dict: Optional[DeviceDtypeDict] = {(beta1.device, beta1.dtype): beta1} else: beta1_dict = None for i, param in enumerate(params): grad = grads[i] if not maximize else -grads[i] exp_avg = exp_avgs[i] exp_avg_sq = exp_avg_sqs[i] step_t = state_steps[i] # If compiling, the compiler will handle cudagraph checks, see note [torch.compile x capturable] if not torch.compiler.is_compiling() and capturable: capturable_supported_devices = _get_capturable_supported_devices() assert ( param.device.type == step_t.device.type and param.device.type in capturable_supported_devices ), f"If capturable=True, params and state_steps must be on supported devices: {capturable_supported_devices}." # update step step_t += 1 if weight_decay != 0: if decoupled_weight_decay: # Perform stepweight decay param.mul_(1 - lr * weight_decay) else: # Nested if is necessary to bypass jitscript rules if differentiable and isinstance(weight_decay, Tensor): if weight_decay.requires_grad: grad = grad.addcmul_(param.clone(), weight_decay) else: grad = grad.add(param, alpha=weight_decay) else: grad = grad.add(param, alpha=weight_decay) if torch.is_complex(param): grad = torch.view_as_real(grad) exp_avg = torch.view_as_real(exp_avg) exp_avg_sq = torch.view_as_real(exp_avg_sq) if amsgrad: max_exp_avg_sqs[i] = torch.view_as_real(max_exp_avg_sqs[i]) param = torch.view_as_real(param) device = param.device if beta1_dict is not None: dtype = param.dtype # type: ignore[union-attr] # cast to workaround https://github.com/pytorch/pytorch/issues/140601 key = (device, dtype) if key not in beta1_dict: beta1_dict[key] = beta1.to(device=device, dtype=dtype, non_blocking=True) # type: ignore[union-attr] device_beta1: Union[float, Tensor] = beta1_dict[key] else: device_beta1 = beta1 # Decay the first and second moment running average coefficient exp_avg.lerp_(grad, 1 - device_beta1) # Nested if is necessary to bypass jitscript rules if differentiable and isinstance(beta2, Tensor): if beta2.requires_grad: # Using lerp to only use 2 operations bc addcmul's value cannot be a tensor # Showing equivalence of differentiable path and nondifferentiable path # expavg * b2 + grad^2 * (1-b2) # add expavg * (1-b2) - expavg * (1-b2) = 0 # expavg * b2 + expavg * (1-b2) - expavg * (1-b2) + grad^2 * (1-b2) # expavg - expavg * (1-b2) + grad^2 * (1-b2) # expavg + (grad^2 - expavg) * (1-b2) # expavg.lerp(grad^2, 1-beta2) exp_avg_sq.lerp_(torch.square(grad), weight=1 - beta2) else: exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1 - beta2) else: exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1 - beta2) if capturable or differentiable: step = step_t # Nested if is necessary to bypass jitscript rules if differentiable and isinstance(beta1, Tensor): if beta1.requires_grad: bias_correction1 = 1 - beta1 ** step.clone() else: bias_correction1 = 1 - beta1**step else: bias_correction1 = 1 - beta1**step # Nested if is necessary to bypass jitscript rules if differentiable and isinstance(beta2, Tensor): if beta2.requires_grad: bias_correction2 = 1 - beta2 ** step.clone() else: bias_correction2 = 1 - beta2**step else: bias_correction2 = 1 - beta2**step step_size = lr / bias_correction1 step_size_neg = step_size.neg() bias_correction2_sqrt = bias_correction2.sqrt() if amsgrad: # Maintains the maximum of all 2nd moment running avg. till now if differentiable: max_exp_avg_sq = max_exp_avg_sqs[i].clone() else: max_exp_avg_sq = max_exp_avg_sqs[i] max_exp_avg_sqs[i].copy_(torch.maximum(max_exp_avg_sq, exp_avg_sq)) # Uses the max. for normalizing running avg. of gradient # Folds in (admittedly ugly) 1-elem step_size math here to avoid extra param-set-sized read+write # (can't fold it into addcdiv_ below because addcdiv_ requires value is a Number, not a Tensor) denom = ( max_exp_avg_sqs[i].sqrt() / (bias_correction2_sqrt * step_size_neg) ).add_(eps / step_size_neg) else: denom = ( exp_avg_sq.sqrt() / (bias_correction2_sqrt * step_size_neg) ).add_(eps / step_size_neg) if differentiable: param.addcdiv_(exp_avg.clone(), denom) else: param.addcdiv_(exp_avg, denom) else: step = _get_value(step_t) bias_correction1 = 1 - beta1**step bias_correction2 = 1 - beta2**step step_size = lr / bias_correction1 bias_correction2_sqrt = bias_correction2**0.5 if amsgrad: # Maintains the maximum of all 2nd moment running avg. till now torch.maximum(max_exp_avg_sqs[i], exp_avg_sq, out=max_exp_avg_sqs[i]) # Use the max. for normalizing running avg. of gradient denom = (max_exp_avg_sqs[i].sqrt() / bias_correction2_sqrt).add_(eps) else: denom = (exp_avg_sq.sqrt() / bias_correction2_sqrt).add_(eps) param.addcdiv_(exp_avg, denom, value=-step_size) # Lastly, switch back to complex view if amsgrad and torch.is_complex(params[i]): max_exp_avg_sqs[i] = torch.view_as_complex(max_exp_avg_sqs[i]) def _multi_tensor_adam( params: list[Tensor], grads: list[Tensor], exp_avgs: list[Tensor], exp_avg_sqs: list[Tensor], max_exp_avg_sqs: list[Tensor], state_steps: list[Tensor], grad_scale: Optional[Tensor], found_inf: Optional[Tensor], *, amsgrad: bool, has_complex: bool, beta1: Union[float, Tensor], beta2: Union[float, Tensor], lr: Union[float, Tensor], weight_decay: float, eps: float, maximize: bool, capturable: bool, differentiable: bool, decoupled_weight_decay: bool, ): if len(params) == 0: return if isinstance(lr, Tensor) and not capturable: raise RuntimeError( "lr as a Tensor is not supported for capturable=False and foreach=True" ) if isinstance(beta1, Tensor): if not capturable: raise ValueError( "beta1 as a Tensor is not supported for capturable=False and foreach=True" ) if beta1.numel() != 1: raise ValueError("Tensor beta1 must be 1-element") if isinstance(beta2, Tensor): if not capturable: raise ValueError( "beta2 as a Tensor is not supported for capturable=False and foreach=True" ) if beta2.numel() != 1: raise ValueError("Tensor beta2 must be 1-element") # If compiling, the compiler will handle cudagraph checks, see note [torch.compile x capturable] if not torch.compiler.is_compiling() and capturable: capturable_supported_devices = _get_capturable_supported_devices( supports_xla=False ) assert all( p.device.type == step.device.type and p.device.type in capturable_supported_devices for p, step in zip(params, state_steps) ), f"If capturable=True, params and state_steps must be on supported devices: {capturable_supported_devices}." assert grad_scale is None and found_inf is None assert not differentiable, "_foreach ops don't support autograd" grouped_tensors = Optimizer._group_tensors_by_device_and_dtype( [params, grads, exp_avgs, exp_avg_sqs, max_exp_avg_sqs, state_steps] # type: ignore[list-item] ) # We only shuffle around the beta when it is a Tensor and on CUDA, otherwise, we prefer # treating it as a scalar. beta1_dict: Optional[DeviceDict] = ( # type: ignore[attr-defined] {beta1.device: beta1} if isinstance(beta1, Tensor) and str(beta1.device) != "cpu" else None ) for ( device_params_, device_grads_, device_exp_avgs_, device_exp_avg_sqs_, device_max_exp_avg_sqs_, device_state_steps_, ), _ in grouped_tensors.values(): device_params = cast(list[Tensor], device_params_) device_grads = cast(list[Tensor], device_grads_) device_exp_avgs = cast(list[Tensor], device_exp_avgs_) device_exp_avg_sqs = cast(list[Tensor], device_exp_avg_sqs_) device_state_steps = cast(list[Tensor], device_state_steps_) device = device_params[0].device if beta1_dict is not None and device not in beta1_dict: beta1_dict[device] = beta1.to(device=device, non_blocking=True) # type: ignore[union-attr, attr-defined] device_beta1 = beta1_dict[device] if beta1_dict else beta1 # Handle complex parameters if has_complex: if amsgrad: device_max_exp_avg_sqs = cast(list[Tensor], device_max_exp_avg_sqs_) _view_as_real( device_params, device_grads, device_exp_avgs, device_exp_avg_sqs, device_max_exp_avg_sqs, ) else: _view_as_real( device_params, device_grads, device_exp_avgs, device_exp_avg_sqs ) if maximize: device_grads = torch._foreach_neg(device_grads) # type: ignore[assignment] # Update steps # If steps are on CPU, foreach will fall back to the slow path, which is a for-loop calling t.add(1) over # and over. 1 will then be wrapped into a Tensor over and over again, which is slower than if we just # wrapped it once now. The alpha is required to assure we go to the right overload. if not torch.compiler.is_compiling() and device_state_steps[0].is_cpu: torch._foreach_add_( device_state_steps, torch.tensor(1.0, device="cpu"), alpha=1.0 ) else: torch._foreach_add_(device_state_steps, 1) if weight_decay != 0: if decoupled_weight_decay: # Perform stepweight decay torch._foreach_mul_(device_params, 1 - lr * weight_decay) else: # Re-use the intermediate memory (device_grads) already allocated for maximize if maximize: torch._foreach_add_(device_grads, device_params, alpha=weight_decay) else: device_grads = torch._foreach_add( # type: ignore[assignment] device_grads, device_params, alpha=weight_decay ) # Decay the first and second moment running average coefficient # Use device beta1 if beta1 is a tensor to ensure all # tensors are on the same device torch._foreach_lerp_(device_exp_avgs, device_grads, 1 - device_beta1) torch._foreach_mul_(device_exp_avg_sqs, beta2) # Due to the strictness of the _foreach_addcmul API, we can't have a single # tensor scalar as the scalar arg (only python number is supported there) # as a result, separate out the value mul # Filed https://github.com/pytorch/pytorch/issues/139795 if isinstance(beta2, torch.Tensor): scaled_device_grads = torch._foreach_mul(device_grads, 1 - beta2) # type: ignore[assignment] value = 1.0 else: scaled_device_grads = device_grads # type: ignore[assignment] value = 1 - beta2 torch._foreach_addcmul_( device_exp_avg_sqs, scaled_device_grads, device_grads, value ) # Delete the local intermediate(s) since they won't be used anymore to save on peak memory del device_grads del scaled_device_grads bias_correction1: Union[tuple[Tensor, ...], list[Tensor]] bias_correction2: Union[tuple[Tensor, ...], list[Tensor]] bias_correction2_sqrt: Union[tuple[Tensor, ...], list[Tensor]] if capturable: bias_correction1 = torch._foreach_pow(beta1, device_state_steps) # type: ignore[arg-type] bias_correction2 = torch._foreach_pow(beta2, device_state_steps) # type: ignore[arg-type] # foreach_sub doesn't allow a scalar as the first arg torch._foreach_sub_(bias_correction1, 1) torch._foreach_sub_(bias_correction2, 1) # we do not negate bias_correction1 as it'll need to be negated later anyway torch._foreach_neg_(bias_correction2) # foreach_div doesn't allow a scalar as the first arg torch._foreach_div_(bias_correction1, lr) torch._foreach_reciprocal_(bias_correction1) torch._foreach_sqrt_(bias_correction2) # Re-assign for clarity as we maintain minimal intermediates: we'll have # step_size = - lr / (1 - beta1 ^ t) where t = num_steps # bias_correction2_sqrt = sqrt(1 - beta2 ^ t) step_size = bias_correction1 bias_correction2_sqrt = bias_correction2 if amsgrad: device_max_exp_avg_sqs = cast(list[Tensor], device_max_exp_avg_sqs_) # Maintains the maximum of all 2nd moment running avg. till now torch._foreach_maximum_(device_max_exp_avg_sqs, device_exp_avg_sqs) # type: ignore[assignment] # Set intermediate to the max. for normalizing running avg. of gradient when amsgrad exp_avg_sq_sqrt = torch._foreach_sqrt(device_max_exp_avg_sqs) else: exp_avg_sq_sqrt = torch._foreach_sqrt(device_exp_avg_sqs) torch._foreach_div_(exp_avg_sq_sqrt, bias_correction2_sqrt) torch._foreach_add_(exp_avg_sq_sqrt, eps) torch._foreach_div_(exp_avg_sq_sqrt, step_size) # at this point, exp_avg_sq_sqrt = - (1 - beta^t) * [sqrt(exp_avg_sq / (1 - beta2^t)) + eps] / lr torch._foreach_addcdiv_(device_params, device_exp_avgs, exp_avg_sq_sqrt) else: bias_correction1 = [ 1 - beta1 ** _get_value(step) for step in device_state_steps ] bias_correction2 = [ 1 - beta2 ** _get_value(step) for step in device_state_steps ] step_size = _stack_if_compiling([(lr / bc) * -1 for bc in bias_correction1]) bias_correction2_sqrt = [bc**0.5 for bc in bias_correction2] # type: ignore[arg-type] if amsgrad: device_max_exp_avg_sqs = cast(list[Tensor], device_max_exp_avg_sqs_) # Maintains the maximum of all 2nd moment running avg. till now torch._foreach_maximum_(device_max_exp_avg_sqs, device_exp_avg_sqs) # Use the max. for normalizing running avg. of gradient exp_avg_sq_sqrt = torch._foreach_sqrt(device_max_exp_avg_sqs) else: exp_avg_sq_sqrt = torch._foreach_sqrt(device_exp_avg_sqs) torch._foreach_div_(exp_avg_sq_sqrt, bias_correction2_sqrt) torch._foreach_add_(exp_avg_sq_sqrt, eps) torch._foreach_addcdiv_( device_params, device_exp_avgs, exp_avg_sq_sqrt, step_size # type: ignore[arg-type] ) def _fused_adam( params: list[Tensor], grads: list[Tensor], exp_avgs: list[Tensor], exp_avg_sqs: list[Tensor], max_exp_avg_sqs: list[Tensor], state_steps: list[Tensor], grad_scale: Optional[Tensor], found_inf: Optional[Tensor], *, amsgrad: bool, has_complex: bool, # Needed for consistency. beta1: float, beta2: float, lr: Union[float, Tensor], weight_decay: float, eps: float, maximize: bool, capturable: bool, # Needed for consistency. differentiable: bool, decoupled_weight_decay: bool, ) -> None: if not params: return if differentiable: raise RuntimeError("Adam with fused=True does not support differentiable=True") grad_scale_dict: DeviceDict = ( {grad_scale.device: grad_scale} if grad_scale is not None else {} ) found_inf_dict: DeviceDict = ( {found_inf.device: found_inf} if found_inf is not None else {} ) # We only shuffle around the lr when it is a Tensor and on CUDA, otherwise, we prefer # treating it as a scalar. lr_dict: Optional[DeviceDict] = ( {lr.device: lr} if isinstance(lr, Tensor) and str(lr.device) != "cpu" else None ) grouped_tensors = Optimizer._group_tensors_by_device_and_dtype( [params, grads, exp_avgs, exp_avg_sqs, max_exp_avg_sqs, state_steps] # type: ignore[list-item] ) for (device, _), ( ( device_params_, device_grads_, device_exp_avgs_, device_exp_avg_sqs_, device_max_exp_avg_sqs, device_state_steps_, ), _, ) in grouped_tensors.items(): device_params = cast(list[Tensor], device_params_) device_grads = cast(list[Tensor], device_grads_) device_exp_avgs = cast(list[Tensor], device_exp_avgs_) device_exp_avg_sqs = cast(list[Tensor], device_exp_avg_sqs_) device_state_steps = cast(list[Tensor], device_state_steps_) if device.type == "mps": # type: ignore[union-attr] assert found_inf is None and grad_scale is None device_grad_scale, device_found_inf = None, None if grad_scale is not None: device_grad_scale = grad_scale_dict.setdefault( device, grad_scale.to(device, non_blocking=True) ) if found_inf is not None: device_found_inf = found_inf_dict.setdefault( device, found_inf.to(device, non_blocking=True) ) if lr_dict is not None and device not in lr_dict: lr_dict[device] = lr.to(device=device, non_blocking=True) # type: ignore[union-attr] lr = lr_dict[device] torch._foreach_add_(device_state_steps, 1) func = torch._fused_adam_ if not decoupled_weight_decay else torch._fused_adamw_ func( device_params, device_grads, device_exp_avgs, device_exp_avg_sqs, device_max_exp_avg_sqs, # type: ignore[arg-type] device_state_steps, amsgrad=amsgrad, lr=lr, # type: ignore[arg-type] beta1=beta1, beta2=beta2, weight_decay=weight_decay, eps=eps, maximize=maximize, grad_scale=device_grad_scale, found_inf=device_found_inf, ) if device_found_inf is not None: torch._foreach_sub_( device_state_steps, [device_found_inf] * len(device_state_steps) ) @_disable_dynamo_if_unsupported(single_tensor_fn=_single_tensor_adam) def adam( params: list[Tensor], grads: list[Tensor], exp_avgs: list[Tensor], exp_avg_sqs: list[Tensor], max_exp_avg_sqs: list[Tensor], state_steps: list[Tensor], # kwonly args with defaults are not supported by functions compiled with torchscript issue #70627 # setting this as kwarg for now as functional API is compiled by torch/distributed/optim foreach: Optional[bool] = None, capturable: bool = False, differentiable: bool = False, fused: Optional[bool] = None, grad_scale: Optional[Tensor] = None, found_inf: Optional[Tensor] = None, has_complex: bool = False, decoupled_weight_decay: bool = False, *, amsgrad: bool, beta1: float, beta2: float, lr: Union[float, Tensor], weight_decay: float, eps: float, maximize: bool, ): r"""Functional API that performs Adam algorithm computation. See :class:`~torch.optim.Adam` for details. """ # Respect when the user inputs False/True for foreach or fused. We only want to change # the default when neither have been user-specified. Note that we default to foreach # and pass False to use_fused. This is not a mistake--we want to give the fused impl # bake-in time before making it the default, even if it is typically faster. if fused is None and foreach is None: _, foreach = _default_to_fused_or_foreach( params, differentiable, use_fused=False ) # Do not flip on foreach for the unsupported case where lr is a Tensor and capturable=False. if foreach and isinstance(lr, Tensor) and not capturable: foreach = False if fused is None: fused = False if foreach is None: foreach = False # this check is slow during compilation, so we skip it # if it's strictly needed we can add this check back in dynamo if not torch.compiler.is_compiling() and not all( isinstance(t, torch.Tensor) for t in state_steps ): raise RuntimeError( "API has changed, `state_steps` argument must contain a list of singleton tensors" ) if foreach and torch.jit.is_scripting(): raise RuntimeError("torch.jit.script not supported with foreach optimizers") if fused and torch.jit.is_scripting(): raise RuntimeError("torch.jit.script not supported with fused optimizers") if fused and not torch.jit.is_scripting(): func = _fused_adam elif foreach and not torch.jit.is_scripting(): func = _multi_tensor_adam else: func = _single_tensor_adam func( params, grads, exp_avgs, exp_avg_sqs, max_exp_avg_sqs, state_steps, amsgrad=amsgrad, has_complex=has_complex, beta1=beta1, beta2=beta2, lr=lr, weight_decay=weight_decay, eps=eps, maximize=maximize, capturable=capturable, differentiable=differentiable, grad_scale=grad_scale, found_inf=found_inf, decoupled_weight_decay=decoupled_weight_decay, )

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy