Shortcuts

Source code for torch.optim.adamax

# mypy: allow-untyped-defs
from typing import cast, Optional, Union

import torch
from torch import Tensor

from .optimizer import (
    _capturable_doc,
    _default_to_fused_or_foreach,
    _differentiable_doc,
    _disable_dynamo_if_unsupported,
    _foreach_doc,
    _get_capturable_supported_devices,
    _get_scalar_dtype,
    _get_value,
    _maximize_doc,
    _params_doc,
    _use_grad_for_differentiable,
    _view_as_real,
    Optimizer,
    ParamsT,
)


__all__ = ["Adamax", "adamax"]


[docs]class Adamax(Optimizer): def __init__( self, params: ParamsT, lr: Union[float, Tensor] = 2e-3, betas: tuple[float, float] = (0.9, 0.999), eps: float = 1e-8, weight_decay: float = 0, foreach: Optional[bool] = None, *, maximize: bool = False, differentiable: bool = False, capturable: bool = False, ): if isinstance(lr, Tensor) and lr.numel() != 1: raise ValueError("Tensor lr must be 1-element") if not 0.0 <= lr: raise ValueError(f"Invalid learning rate: {lr}") if not 0.0 <= eps: raise ValueError(f"Invalid epsilon value: {eps}") if not 0.0 <= betas[0] < 1.0: raise ValueError(f"Invalid beta parameter at index 0: {betas[0]}") if not 0.0 <= betas[1] < 1.0: raise ValueError(f"Invalid beta parameter at index 1: {betas[1]}") if not 0.0 <= weight_decay: raise ValueError(f"Invalid weight_decay value: {weight_decay}") defaults = dict( lr=lr, betas=betas, eps=eps, weight_decay=weight_decay, foreach=foreach, maximize=maximize, differentiable=differentiable, capturable=capturable, ) super().__init__(params, defaults) def __setstate__(self, state): super().__setstate__(state) for group in self.param_groups: group.setdefault("foreach", None) group.setdefault("maximize", False) group.setdefault("differentiable", False) group.setdefault("capturable", False) for p in group["params"]: p_state = self.state.get(p, []) if len(p_state) != 0 and not torch.is_tensor(p_state["step"]): step_val = float(p_state["step"]) p_state["step"] = ( torch.tensor( step_val, dtype=_get_scalar_dtype(), device=p.device ) if group["capturable"] else torch.tensor(step_val, dtype=_get_scalar_dtype()) ) def _init_group( self, group, params_with_grad, grads, exp_avgs, exp_infs, state_steps ): has_complex = False for p in group["params"]: if p.grad is None: continue has_complex |= torch.is_complex(p) params_with_grad.append(p) if p.grad.is_sparse: raise RuntimeError("Adamax does not support sparse gradients") grads.append(p.grad) state = self.state[p] # State initialization if len(state) == 0: state["step"] = ( torch.zeros((), dtype=_get_scalar_dtype(), device=p.device) if group["capturable"] else torch.tensor(0.0, dtype=_get_scalar_dtype()) ) state["exp_avg"] = torch.zeros_like( p, memory_format=torch.preserve_format ) state["exp_inf"] = torch.zeros_like( p, memory_format=torch.preserve_format ) exp_avgs.append(state["exp_avg"]) exp_infs.append(state["exp_inf"]) state_steps.append(state["step"]) return has_complex
[docs] @_use_grad_for_differentiable def step(self, closure=None): """Performs a single optimization step. Args: closure (Callable, optional): A closure that reevaluates the model and returns the loss. """ self._cuda_graph_capture_health_check() loss = None if closure is not None: with torch.enable_grad(): loss = closure() for group in self.param_groups: params_with_grad: list[Tensor] = [] grads: list[Tensor] = [] exp_avgs: list[Tensor] = [] exp_infs: list[Tensor] = [] state_steps: list[Tensor] = [] beta1, beta2 = group["betas"] eps = group["eps"] lr = group["lr"] weight_decay = group["weight_decay"] foreach = group["foreach"] maximize = group["maximize"] differentiable = group["differentiable"] capturable = group["capturable"] has_complex = self._init_group( group, params_with_grad, grads, exp_avgs, exp_infs, state_steps ) adamax( params_with_grad, grads, exp_avgs, exp_infs, state_steps, eps=eps, beta1=beta1, beta2=beta2, lr=lr, weight_decay=weight_decay, foreach=foreach, maximize=maximize, differentiable=differentiable, capturable=capturable, has_complex=has_complex, ) return loss
Adamax.__doc__ = ( r"""Implements Adamax algorithm (a variant of Adam based on infinity norm). .. math:: \begin{aligned} &\rule{110mm}{0.4pt} \\ &\textbf{input} : \gamma \text{ (lr)}, \beta_1, \beta_2 \text{ (betas)},\theta_0 \text{ (params)},f(\theta) \text{ (objective)}, \: \lambda \text{ (weight decay)}, \\ &\hspace{13mm} \epsilon \text{ (epsilon)} \\ &\textbf{initialize} : m_0 \leftarrow 0 \text{ ( first moment)}, u_0 \leftarrow 0 \text{ ( infinity norm)} \\[-1.ex] &\rule{110mm}{0.4pt} \\ &\textbf{for} \: t=1 \: \textbf{to} \: \ldots \: \textbf{do} \\ &\hspace{5mm}g_t \leftarrow \nabla_{\theta} f_t (\theta_{t-1}) \\ &\hspace{5mm}if \: \lambda \neq 0 \\ &\hspace{10mm} g_t \leftarrow g_t + \lambda \theta_{t-1} \\ &\hspace{5mm}m_t \leftarrow \beta_1 m_{t-1} + (1 - \beta_1) g_t \\ &\hspace{5mm}u_t \leftarrow \mathrm{max}(\beta_2 u_{t-1}, |g_{t}|+\epsilon) \\ &\hspace{5mm}\theta_t \leftarrow \theta_{t-1} - \frac{\gamma m_t}{(1-\beta^t_1) u_t} \\ &\rule{110mm}{0.4pt} \\[-1.ex] &\bf{return} \: \theta_t \\[-1.ex] &\rule{110mm}{0.4pt} \\[-1.ex] \end{aligned} For further details regarding the algorithm we refer to `Adam: A Method for Stochastic Optimization`_. """ + rf""" Args: {_params_doc} lr (float, Tensor, optional): learning rate (default: 2e-3) betas (Tuple[float, float], optional): coefficients used for computing running averages of gradient and its square eps (float, optional): term added to the denominator to improve numerical stability (default: 1e-8) weight_decay (float, optional): weight decay (L2 penalty) (default: 0) {_foreach_doc} {_maximize_doc} {_differentiable_doc} {_capturable_doc} .. _Adam\: A Method for Stochastic Optimization: https://arxiv.org/abs/1412.6980 """ ) def _single_tensor_adamax( params: list[Tensor], grads: list[Tensor], exp_avgs: list[Tensor], exp_infs: list[Tensor], state_steps: list[Tensor], *, eps: float, beta1: float, beta2: float, lr: float, weight_decay: float, maximize: bool, differentiable: bool, capturable: bool, has_complex: bool, ): for i, param in enumerate(params): grad = grads[i] grad = grad if not maximize else -grad exp_avg = exp_avgs[i] exp_inf = exp_infs[i] step_t = state_steps[i] # If compiling, the compiler will handle cudagraph checks, see note [torch.compile x capturable] if not torch.compiler.is_compiling() and capturable: capturable_supported_devices = _get_capturable_supported_devices() assert ( param.device.type == step_t.device.type and param.device.type in capturable_supported_devices ), f"If capturable=True, params and state_steps must be on supported devices: {capturable_supported_devices}." # update step step_t += 1 if weight_decay != 0: grad = grad.add(param, alpha=weight_decay) if torch.is_complex(param): param = torch.view_as_real(param) grad = torch.view_as_real(grad) exp_avg = torch.view_as_real(exp_avg) exp_inf = torch.view_as_real(exp_inf) # Update biased first moment estimate. exp_avg.lerp_(grad, 1 - beta1) # Update the exponentially weighted infinity norm. if not differentiable: torch.maximum( exp_inf.mul_(beta2), grad.abs().add_(eps), out=exp_inf, ) else: norm_buf = torch.cat( [exp_inf.mul_(beta2).unsqueeze(0), grad.abs().add_(eps).unsqueeze_(0)], 0, ) exp_inf.copy_(torch.amax(norm_buf, 0, keepdim=False)) if capturable: # why jump through extra hoops and negate bias_correction? check out #121238 # once fixed, we should use bias_correction with addcdiv value=-1 for readability neg_bias_correction = beta1**step_t - 1 neg_bias_correction.div_(lr) denom = exp_inf * neg_bias_correction param.addcdiv_(exp_avg, denom) else: bias_correction = 1 - beta1 ** _get_value(step_t) clr = lr / bias_correction param.addcdiv_(exp_avg, exp_inf, value=-clr) def _multi_tensor_adamax( params: list[Tensor], grads: list[Tensor], exp_avgs: list[Tensor], exp_infs: list[Tensor], state_steps: list[Tensor], *, eps: float, beta1: float, beta2: float, lr: float, weight_decay: float, maximize: bool, differentiable: bool, capturable: bool, has_complex: bool, ): assert not differentiable, "_foreach ops don't support autograd" if len(params) == 0: return # If compiling, the compiler will handle cudagraph checks, see note [torch.compile x capturable] if not torch.compiler.is_compiling() and capturable: capturable_supported_devices = _get_capturable_supported_devices( supports_xla=False ) assert all( p.device.type == step.device.type and p.device.type in capturable_supported_devices for p, step in zip(params, state_steps) ), f"If capturable=True, params and state_steps must be on supported devices: {capturable_supported_devices}." grouped_tensors = Optimizer._group_tensors_by_device_and_dtype( [params, grads, exp_avgs, exp_infs, state_steps] # type: ignore[list-item] ) for ( grouped_params_, grouped_grads_, grouped_exp_avgs_, grouped_exp_infs_, grouped_state_steps_, ), _ in grouped_tensors.values(): grouped_params = cast(list[Tensor], grouped_params_) grouped_grads = cast(list[Tensor], grouped_grads_) grouped_exp_avgs = cast(list[Tensor], grouped_exp_avgs_) grouped_exp_infs = cast(list[Tensor], grouped_exp_infs_) grouped_state_steps = cast(list[Tensor], grouped_state_steps_) if has_complex: _view_as_real( grouped_params, grouped_grads, grouped_exp_avgs, grouped_exp_infs ) if maximize: grouped_grads = torch._foreach_neg(grouped_grads) # type: ignore[assignment] # Update steps # If steps are on CPU, foreach will fall back to the slow path, which is a for-loop calling t.add(1) over # and over. 1 will then be wrapped into a Tensor over and over again, which is slower than if we just # wrapped it once now. The alpha is required to assure we go to the right overload. if not torch.compiler.is_compiling() and grouped_state_steps[0].is_cpu: torch._foreach_add_( grouped_state_steps, torch.tensor(1.0, device="cpu"), alpha=1.0 ) else: torch._foreach_add_(grouped_state_steps, 1) if weight_decay != 0: if maximize: # Re-use the intermediate memory (grouped_grads) already allocated for maximize torch._foreach_add_(grouped_grads, grouped_params, alpha=weight_decay) else: grouped_grads = torch._foreach_add( # type: ignore[assignment] grouped_grads, grouped_params, alpha=weight_decay ) # Update biased first moment estimate. torch._foreach_lerp_(grouped_exp_avgs, grouped_grads, 1 - beta1) # Update the exponentially weighted infinity norm. torch._foreach_mul_(grouped_exp_infs, beta2) # in this case, we need to introduce a copy of the grads # since one has not been introduced previously if not maximize and weight_decay == 0: grouped_grads = torch._foreach_abs(grouped_grads) # type: ignore[assignment] else: torch._foreach_abs_(grouped_grads) torch._foreach_add_(grouped_grads, eps) torch._foreach_maximum_(grouped_exp_infs, grouped_grads) bias_corrections: Union[tuple[Tensor, ...], list[Tensor]] if capturable: bias_corrections = torch._foreach_pow(beta1, grouped_state_steps) # foreach_sub doesn't allow a scalar as the first arg torch._foreach_sub_(bias_corrections, 1) torch._foreach_div_(bias_corrections, lr) denom = torch._foreach_mul(grouped_exp_infs, bias_corrections) torch._foreach_addcdiv_(grouped_params, grouped_exp_avgs, denom) else: bias_corrections = [ 1 - beta1 ** _get_value(step) for step in grouped_state_steps ] step_size = [(_get_value(lr) / bc) * -1 for bc in bias_corrections] torch._foreach_addcdiv_( grouped_params, grouped_exp_avgs, grouped_exp_infs, step_size ) @_disable_dynamo_if_unsupported(single_tensor_fn=_single_tensor_adamax) def adamax( params: list[Tensor], grads: list[Tensor], exp_avgs: list[Tensor], exp_infs: list[Tensor], state_steps: list[Tensor], # kwonly args with defaults are not supported by functions compiled with torchscript issue #70627 # setting this as kwarg for now as functional API is compiled by torch/distributed/optim foreach: Optional[bool] = None, maximize: bool = False, differentiable: bool = False, capturable: bool = False, has_complex: bool = False, *, eps: float, beta1: float, beta2: float, lr: float, weight_decay: float, ): r"""Functional API that performs adamax algorithm computation. See :class:`~torch.optim.Adamax` for details. """ if not torch.compiler.is_compiling() and not all( isinstance(t, torch.Tensor) for t in state_steps ): raise RuntimeError( "API has changed, `state_steps` argument must contain a list of singleton tensors" ) if foreach is None: _, foreach = _default_to_fused_or_foreach( params, differentiable, use_fused=False ) if foreach and torch.jit.is_scripting(): raise RuntimeError("torch.jit.script not supported with foreach optimizers") if foreach and not torch.jit.is_scripting(): func = _multi_tensor_adamax else: func = _single_tensor_adamax func( params, grads, exp_avgs, exp_infs, state_steps, eps=eps, beta1=beta1, beta2=beta2, lr=lr, weight_decay=weight_decay, maximize=maximize, differentiable=differentiable, has_complex=has_complex, capturable=capturable, )

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy