Shortcuts

Source code for torch.optim.nadam

# mypy: allow-untyped-defs
r"""Implementation for the NAdam algorithm."""
from typing import cast, Optional, Union

import torch
from torch import Tensor

from .optimizer import (
    _capturable_doc,
    _default_to_fused_or_foreach,
    _differentiable_doc,
    _disable_dynamo_if_unsupported,
    _foreach_doc,
    _get_capturable_supported_devices,
    _get_scalar_dtype,
    _get_value,
    _maximize_doc,
    _params_doc,
    _stack_if_compiling,
    _use_grad_for_differentiable,
    _view_as_real,
    Optimizer,
    ParamsT,
)


__all__ = ["NAdam", "nadam"]


[docs]class NAdam(Optimizer): # noqa: D101 def __init__( self, params: ParamsT, lr: Union[float, Tensor] = 2e-3, betas: tuple[float, float] = (0.9, 0.999), eps: float = 1e-8, weight_decay: float = 0, momentum_decay: float = 4e-3, decoupled_weight_decay: bool = False, *, foreach: Optional[bool] = None, maximize: bool = False, capturable: bool = False, differentiable: bool = False, ): # noqa: D107 if isinstance(lr, Tensor) and lr.numel() != 1: raise ValueError("Tensor lr must be 1-element") if not 0.0 <= lr: raise ValueError(f"Invalid learning rate: {lr}") if not 0.0 <= eps: raise ValueError(f"Invalid epsilon value: {eps}") if not 0.0 <= betas[0] < 1.0: raise ValueError(f"Invalid beta parameter at index 0: {betas[0]}") if not 0.0 <= betas[1] < 1.0: raise ValueError(f"Invalid beta parameter at index 1: {betas[1]}") if not 0.0 <= weight_decay: raise ValueError(f"Invalid weight_decay value: {weight_decay}") if not 0.0 <= momentum_decay: raise ValueError(f"Invalid momentum_decay value: {momentum_decay}") defaults = dict( lr=lr, betas=betas, eps=eps, weight_decay=weight_decay, momentum_decay=momentum_decay, decoupled_weight_decay=decoupled_weight_decay, maximize=maximize, foreach=foreach, capturable=capturable, differentiable=differentiable, ) super().__init__(params, defaults) def __setstate__(self, state): # noqa: D105 super().__setstate__(state) for group in self.param_groups: group.setdefault("maximize", False) group.setdefault("foreach", None) group.setdefault("capturable", False) group.setdefault("differentiable", False) group.setdefault("decoupled_weight_decay", False) for p in group["params"]: p_state = self.state.get(p, []) if len(p_state) != 0: if not torch.is_tensor(p_state["step"]): step_val = float(p_state["step"]) p_state["step"] = ( torch.tensor( step_val, dtype=_get_scalar_dtype(), device=p.device ) if group["capturable"] else torch.tensor(step_val, dtype=_get_scalar_dtype()) ) if not torch.is_tensor(p_state["mu_product"]): mu_prod_val = p_state["mu_product"] p_state["mu_product"] = ( torch.tensor( mu_prod_val, dtype=_get_scalar_dtype(), device=p.device ) if group["capturable"] else torch.tensor(mu_prod_val, dtype=_get_scalar_dtype()) ) def _init_group( self, group, params_with_grad, grads, exp_avgs, exp_avg_sqs, mu_products, state_steps, ): has_complex = False for p in group["params"]: if p.grad is not None: has_complex |= torch.is_complex(p) params_with_grad.append(p) if p.grad.is_sparse: raise RuntimeError("NAdam does not support sparse gradients") grads.append(p.grad) state = self.state[p] # Lazy state initialization if len(state) == 0: # note(crcrpar): [special device hosting for step] # Deliberately host `step` and `mu_product` on CPU if capturable is False. # This is because kernel launches are costly on CUDA and XLA. state["step"] = ( torch.zeros((), dtype=_get_scalar_dtype(), device=p.device) if group["capturable"] else torch.tensor(0.0, dtype=_get_scalar_dtype()) ) state["mu_product"] = ( torch.ones((), dtype=_get_scalar_dtype(), device=p.device) if group["capturable"] else torch.tensor(1.0, dtype=_get_scalar_dtype()) ) # Exponential moving average of gradient values state["exp_avg"] = torch.zeros_like( p, memory_format=torch.preserve_format ) # Exponential moving average of squared gradient values state["exp_avg_sq"] = torch.zeros_like( p, memory_format=torch.preserve_format ) exp_avgs.append(state["exp_avg"]) exp_avg_sqs.append(state["exp_avg_sq"]) mu_products.append(state["mu_product"]) state_steps.append(state["step"]) return has_complex
[docs] @_use_grad_for_differentiable def step(self, closure=None): """Perform a single optimization step. Args: closure (Callable, optional): A closure that reevaluates the model and returns the loss. """ self._cuda_graph_capture_health_check() loss = None if closure is not None: with torch.enable_grad(): loss = closure() for group in self.param_groups: params_with_grad: list[Tensor] = [] grads: list[Tensor] = [] exp_avgs: list[Tensor] = [] exp_avg_sqs: list[Tensor] = [] mu_products: list[Tensor] = [] state_steps: list[Tensor] = [] beta1, beta2 = cast(tuple[float, float], group["betas"]) has_complex = self._init_group( group, params_with_grad, grads, exp_avgs, exp_avg_sqs, mu_products, state_steps, ) nadam( params_with_grad, grads, exp_avgs, exp_avg_sqs, mu_products, state_steps, beta1=beta1, beta2=beta2, lr=group["lr"], weight_decay=group["weight_decay"], momentum_decay=group["momentum_decay"], eps=group["eps"], maximize=group["maximize"], decoupled_weight_decay=group["decoupled_weight_decay"], foreach=group["foreach"], capturable=group["capturable"], differentiable=group["differentiable"], has_complex=has_complex, ) return loss
NAdam.__doc__ = ( r"""Implements NAdam algorithm. .. math:: \begin{aligned} &\rule{110mm}{0.4pt} \\ &\textbf{input} : \gamma_t \text{ (lr)}, \: \beta_1,\beta_2 \text{ (betas)}, \: \theta_0 \text{ (params)}, \: f(\theta) \text{ (objective)} \\ &\hspace{13mm} \: \lambda \text{ (weight decay)}, \:\psi \text{ (momentum decay)} \\ &\hspace{13mm} \: \textit{decoupled\_weight\_decay}, \:\textit{maximize} \\ &\textbf{initialize} : m_0 \leftarrow 0 \text{ ( first moment)}, v_0 \leftarrow 0 \text{ ( second moment)} \\[-1.ex] &\rule{110mm}{0.4pt} \\ &\textbf{for} \: t=1 \: \textbf{to} \: \ldots \: \textbf{do} \\ &\hspace{5mm}\textbf{if} \: \textit{maximize}: \\ &\hspace{10mm}g_t \leftarrow -\nabla_{\theta} f_t (\theta_{t-1}) \\ &\hspace{5mm}\textbf{else} \\ &\hspace{10mm}g_t \leftarrow \nabla_{\theta} f_t (\theta_{t-1}) \\ &\hspace{5mm} \theta_t \leftarrow \theta_{t-1} \\ &\hspace{5mm} \textbf{if} \: \lambda \neq 0 \\ &\hspace{10mm}\textbf{if} \: \textit{decoupled\_weight\_decay} \\ &\hspace{15mm} \theta_t \leftarrow \theta_{t-1} - \gamma \lambda \theta_{t-1} \\ &\hspace{10mm}\textbf{else} \\ &\hspace{15mm} g_t \leftarrow g_t + \lambda \theta_{t-1} \\ &\hspace{5mm} \mu_t \leftarrow \beta_1 \big(1 - \frac{1}{2} 0.96^{t \psi} \big) \\ &\hspace{5mm} \mu_{t+1} \leftarrow \beta_1 \big(1 - \frac{1}{2} 0.96^{(t+1)\psi}\big)\\ &\hspace{5mm}m_t \leftarrow \beta_1 m_{t-1} + (1 - \beta_1) g_t \\ &\hspace{5mm}v_t \leftarrow \beta_2 v_{t-1} + (1-\beta_2) g^2_t \\ &\hspace{5mm}\widehat{m_t} \leftarrow \mu_{t+1} m_t/(1-\prod_{i=1}^{t+1}\mu_i)\\[-1.ex] & \hspace{11mm} + (1-\mu_t) g_t /(1-\prod_{i=1}^{t} \mu_{i}) \\ &\hspace{5mm}\widehat{v_t} \leftarrow v_t/\big(1-\beta_2^t \big) \\ &\hspace{5mm}\theta_t \leftarrow \theta_t - \gamma \widehat{m_t}/ \big(\sqrt{\widehat{v_t}} + \epsilon \big) \\ &\rule{110mm}{0.4pt} \\[-1.ex] &\bf{return} \: \theta_t \\[-1.ex] &\rule{110mm}{0.4pt} \\[-1.ex] \end{aligned} For further details regarding the algorithm we refer to `Incorporating Nesterov Momentum into Adam`_. """ + rf""" Args: {_params_doc} lr (float, Tensor, optional): learning rate (default: 2e-3) betas (Tuple[float, float], optional): coefficients used for computing running averages of gradient and its square (default: (0.9, 0.999)) eps (float, optional): term added to the denominator to improve numerical stability (default: 1e-8) weight_decay (float, optional): weight decay (L2 penalty) (default: 0) momentum_decay (float, optional): momentum momentum_decay (default: 4e-3) decoupled_weight_decay (bool, optional): whether to decouple the weight decay as in AdamW to obtain NAdamW. If True, the algorithm does not accumulate weight decay in the momentum nor variance. (default: False) {_foreach_doc} {_maximize_doc} {_capturable_doc} {_differentiable_doc} .. _Incorporating Nesterov Momentum into Adam: https://openreview.net/forum?id=OM0jvwB8jIp57ZJjtNEZ .. _Decoupled Weight Decay Regularization: https://arxiv.org/abs/1711.05101 """ ) def _single_tensor_nadam( params: list[Tensor], grads: list[Tensor], exp_avgs: list[Tensor], exp_avg_sqs: list[Tensor], mu_products: list[Tensor], state_steps: list[Tensor], *, beta1: float, beta2: float, lr: float, weight_decay: float, momentum_decay: float, eps: float, decoupled_weight_decay: bool, maximize: bool, capturable: bool, differentiable: bool, has_complex: bool, ): for i, param in enumerate(params): grad = grads[i] if not maximize else -grads[i] exp_avg = exp_avgs[i] exp_avg_sq = exp_avg_sqs[i] mu_product = mu_products[i] step_t = state_steps[i] if torch.is_complex(param): param = torch.view_as_real(param) grad = torch.view_as_real(grad) exp_avg = torch.view_as_real(exp_avg) exp_avg_sq = torch.view_as_real(exp_avg_sq) # If compiling, the compiler will handle cudagraph checks, see note [torch.compile x capturable] if not torch.compiler.is_compiling() and capturable: capturable_supported_devices = _get_capturable_supported_devices() assert ( param.device.type == mu_product.device.type == step_t.device.type and param.device.type in capturable_supported_devices ), ( f"If capturable=True, params, mu_products and state_steps must be " f"on supported devices: {capturable_supported_devices}." ) # update step step_t += 1 if capturable: step = step_t else: step = _get_value(step_t) bias_correction2 = 1 - beta2**step if weight_decay != 0: if decoupled_weight_decay: # Perform stepweight decay param.mul_(1 - lr * weight_decay) else: grad = grad.add(param, alpha=weight_decay) # calculate the momentum cache \mu^{t} and \mu^{t+1} mu = beta1 * (1.0 - 0.5 * (0.96 ** (step * momentum_decay))) mu_next = beta1 * (1.0 - 0.5 * (0.96 ** ((step + 1) * momentum_decay))) # update mu_product mu_product *= mu # decay the first and second moment running average coefficient exp_avg.lerp_(grad, 1 - beta1) exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1 - beta2) denom = exp_avg_sq.div(bias_correction2).sqrt() if differentiable or capturable: denom = denom.add(eps) # Make autograd track the operations # by updating the grad and exp_avg directly and not using the # scalar "value" argument of addcdiv. mu_product_next = mu_product * mu_next grad = grad * (-lr * (1.0 - mu) / (1.0 - mu_product)) exp_avg = exp_avg * (-lr * mu_next / (1.0 - mu_product_next)) param.addcdiv_(grad, denom) param.addcdiv_(exp_avg, denom) else: mu_product_next = _get_value(mu_product) * mu_next denom.add_(eps) param.addcdiv_( grad, denom, value=(-lr * (1.0 - mu) / (1.0 - _get_value(mu_product))) ) param.addcdiv_( exp_avg, denom, value=(-lr * mu_next) / (1.0 - mu_product_next) ) def _multi_tensor_nadam( params: list[Tensor], grads: list[Tensor], exp_avgs: list[Tensor], exp_avg_sqs: list[Tensor], mu_products: list[Tensor], state_steps: list[Tensor], *, beta1: float, beta2: float, lr: float, weight_decay: float, momentum_decay: float, eps: float, decoupled_weight_decay: bool, maximize: bool, capturable: bool, differentiable: bool, has_complex: bool, ): if len(params) == 0: return assert not differentiable, "_foreach ops don't support autograd" # If compiling, the compiler will handle cudagraph checks, see note [torch.compile x capturable] if not torch.compiler.is_compiling() and capturable: capturable_supported_devices = _get_capturable_supported_devices( supports_xla=False ) assert all( p.device.type == mp.device.type == step.device.type and p.device.type in capturable_supported_devices for p, mp, step in zip(params, mu_products, state_steps) ), f"If capturable=True, params, mu_products, and state_steps must be on supported devices: {capturable_supported_devices}." grouped_tensors = Optimizer._group_tensors_by_device_and_dtype( [params, grads, exp_avgs, exp_avg_sqs, mu_products, state_steps] # type: ignore[list-item] ) for ( grouped_params_, grouped_grads_, grouped_exp_avgs_, grouped_exp_avg_sqs_, grouped_mu_products_, grouped_state_steps_, ), _ in grouped_tensors.values(): grouped_params = cast(list[Tensor], grouped_params_) grouped_grads = cast(list[Tensor], grouped_grads_) grouped_exp_avgs = cast(list[Tensor], grouped_exp_avgs_) grouped_exp_avg_sqs = cast(list[Tensor], grouped_exp_avg_sqs_) grouped_mu_products = cast(list[Tensor], grouped_mu_products_) grouped_state_steps = cast(list[Tensor], grouped_state_steps_) # handle complex if has_complex: _view_as_real( grouped_params, grouped_grads, grouped_exp_avgs, grouped_exp_avg_sqs ) if maximize: grouped_grads = torch._foreach_neg(grouped_grads) # type: ignore[assignment] # Update steps # If steps are on CPU, foreach will fall back to the slow path, which is a for-loop calling t.add(1) over # and over. 1 will then be wrapped into a Tensor over and over again, which is slower than if we just # wrapped it once now. The alpha is required to assure we go to the right overload. if not torch.compiler.is_compiling() and grouped_state_steps[0].is_cpu: torch._foreach_add_( grouped_state_steps, torch.tensor(1.0, device="cpu"), alpha=1.0 ) else: torch._foreach_add_(grouped_state_steps, 1) if weight_decay != 0: if decoupled_weight_decay: # Perform stepweight decay torch._foreach_mul_(grouped_params, 1 - lr * weight_decay) else: # Re-use the intermediate memory (grouped_grads) already allocated for maximize if maximize: torch._foreach_add_( grouped_grads, grouped_params, alpha=weight_decay ) else: grouped_grads = torch._foreach_add( # type: ignore[assignment] grouped_grads, grouped_params, alpha=weight_decay ) # Decay the first and second moment running average coefficient torch._foreach_lerp_(grouped_exp_avgs, grouped_grads, 1 - beta1) torch._foreach_mul_(grouped_exp_avg_sqs, beta2) torch._foreach_addcmul_( grouped_exp_avg_sqs, grouped_grads, grouped_grads, 1 - beta2 ) exp_avg_sq_sqrt = torch._foreach_sqrt(grouped_exp_avg_sqs) bias_correction_sqrt: Union[tuple[Tensor, ...], list[Tensor]] mus: Union[tuple[Tensor, ...], list[Tensor]] mu_nexts: Union[tuple[Tensor, ...], list[Tensor]] if capturable: # mus will be beta1 * (1 - 0.5 * 0.96 ** (step * momentum_decay)) exponent = torch._foreach_mul(grouped_state_steps, momentum_decay) mus = torch._foreach_pow(0.96, exponent) torch._foreach_mul_(mus, -0.5) torch._foreach_add_(mus, 1.0) torch._foreach_mul_(mus, beta1) # mu_nexts will be beta1 * (1 - 0.5 * 0.96 ** ((step + 1) * momentum_decay)) torch._foreach_add_(exponent, momentum_decay) mu_nexts = torch._foreach_pow(0.96, exponent) torch._foreach_mul_(mu_nexts, -0.5) torch._foreach_add_(mu_nexts, 1.0) torch._foreach_mul_(mu_nexts, beta1) # save peak memory as we don't need exponent anymore del exponent bias_correction_sqrt = torch._foreach_pow(beta2, grouped_state_steps) # foreach_sub doesn't allow a scalar as the first arg torch._foreach_sub_(bias_correction_sqrt, 1.0) torch._foreach_neg_(bias_correction_sqrt) torch._foreach_sqrt_(bias_correction_sqrt) else: bias_correction_sqrt = [ (1 - beta2 ** _get_value(step)) ** 0.5 for step in grouped_state_steps ] mus = [ beta1 * (1.0 - 0.5 * (0.96 ** (_get_value(step) * momentum_decay))) for step in grouped_state_steps ] mu_nexts = [ beta1 * (1.0 - 0.5 * (0.96 ** ((_get_value(step) + 1) * momentum_decay))) for step in grouped_state_steps ] # update mu_products torch._foreach_mul_(grouped_mu_products, mus) torch._foreach_div_(exp_avg_sq_sqrt, bias_correction_sqrt) torch._foreach_add_(exp_avg_sq_sqrt, eps) # explicitly delete bias_correction refs to save memory del bias_correction_sqrt if capturable: # Build up the step_size multiplier for grad, reusing mus' memory torch._foreach_sub_(mus, 1.0) torch._foreach_mul_(mus, lr) # foreach_sub doesn't allow a scalar as the first arg denom = torch._foreach_sub(grouped_mu_products, 1.0) torch._foreach_neg_(denom) torch._foreach_div_(mus, denom) # - lr * (1 - mu) / (1 - mu_product) step_size_grads = mus # explicitly delete denom to save memory del denom # Build up the step_size multiplier for exp_avg, reusing mu_nexts' memory denom = torch._foreach_mul(grouped_mu_products, mu_nexts) torch._foreach_mul_(mu_nexts, lr) # foreach_sub doesn't allow a scalar as the first arg, but it's okay because # we need a negative here anyway torch._foreach_sub_(denom, 1.0) torch._foreach_div_(mu_nexts, denom) # - lr * mu_next / (1 - mu_product * mu_next) step_size_expavg = mu_nexts # explicitly delete denom to save memory del denom # we cannot inplace into step_size_grads cuz it is a list of ScalarTensors # and mul'ing with grouped_grads will result in a list of bigger Tensors numerator = torch._foreach_mul(step_size_grads, grouped_grads) torch._foreach_addcmul_(numerator, step_size_expavg, grouped_exp_avgs) # finally, update params torch._foreach_addcdiv_(grouped_params, numerator, exp_avg_sq_sqrt) else: step_size_grads = _stack_if_compiling( [ (_get_value(lr) * (1.0 - mu) / (1.0 - _get_value(mu_product))) * -1 for mu_product, mu in zip(grouped_mu_products, mus) ] ) step_size_expavg = _stack_if_compiling( [ ( _get_value(lr) * mu_next / (1.0 - _get_value(mu_product) * mu_next) ) * -1 for mu_product, mu_next in zip(grouped_mu_products, mu_nexts) ] ) torch._foreach_addcdiv_( grouped_params, grouped_grads, exp_avg_sq_sqrt, step_size_grads # type: ignore[arg-type] ) torch._foreach_addcdiv_( grouped_params, grouped_exp_avgs, exp_avg_sq_sqrt, step_size_expavg # type: ignore[arg-type] ) @_disable_dynamo_if_unsupported(single_tensor_fn=_single_tensor_nadam) def nadam( params: list[Tensor], grads: list[Tensor], exp_avgs: list[Tensor], exp_avg_sqs: list[Tensor], mu_products: list[Tensor], state_steps: list[Tensor], # kwonly args with defaults are not supported by functions compiled with torchscript issue #70627 # setting this as kwarg for now as functional API is compiled by torch/distributed/optim decoupled_weight_decay: bool = False, foreach: Optional[bool] = None, capturable: bool = False, differentiable: bool = False, has_complex: bool = False, maximize: bool = False, *, beta1: float, beta2: float, lr: float, weight_decay: float, momentum_decay: float, eps: float, ): r"""Functional API that performs NAdam algorithm computation. See :class:`~torch.optim.NAdam` for details. """ if not all(isinstance(t, torch.Tensor) for t in state_steps): raise RuntimeError( "API has changed, `state_steps` argument must contain a list of singleton tensors" ) if not all(isinstance(t, torch.Tensor) for t in mu_products): raise RuntimeError( "API has changed, `mu_products` argument must contain a list of singleton tensors" ) if foreach is None: _, foreach = _default_to_fused_or_foreach( params, differentiable, use_fused=False ) if foreach and torch.jit.is_scripting(): raise RuntimeError("torch.jit.script not supported with foreach optimizers") if foreach and not torch.jit.is_scripting(): func = _multi_tensor_nadam else: func = _single_tensor_nadam func( params, grads, exp_avgs, exp_avg_sqs, mu_products, state_steps, beta1=beta1, beta2=beta2, lr=lr, weight_decay=weight_decay, momentum_decay=momentum_decay, maximize=maximize, decoupled_weight_decay=decoupled_weight_decay, eps=eps, capturable=capturable, differentiable=differentiable, has_complex=has_complex, )

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy