Shortcuts

torch.nn.functional.conv1d

torch.nn.functional.conv1d(input, weight, bias=None, stride=1, padding=0, dilation=1, groups=1) Tensor

Applies a 1D convolution over an input signal composed of several input planes.

This operator supports TensorFloat32.

See Conv1d for details and output shape.

Note

In some circumstances when given tensors on a CUDA device and using CuDNN, this operator may select a nondeterministic algorithm to increase performance. If this is undesirable, you can try to make the operation deterministic (potentially at a performance cost) by setting torch.backends.cudnn.deterministic = True. See Reproducibility for more information.

Note

This operator supports complex data types i.e. complex32, complex64, complex128.

Parameters
  • input – input tensor of shape (minibatch,in_channels,iW)(\text{minibatch} , \text{in\_channels} , iW)

  • weight – filters of shape (out_channels,in_channelsgroups,kW)(\text{out\_channels} , \frac{\text{in\_channels}}{\text{groups}} , kW)

  • bias – optional bias of shape (out_channels)(\text{out\_channels}). Default: None

  • stride – the stride of the convolving kernel. Can be a single number or a one-element tuple (sW,). Default: 1

  • padding

    implicit paddings on both sides of the input. Can be a string {‘valid’, ‘same’}, single number or a one-element tuple (padW,). Default: 0 padding='valid' is the same as no padding. padding='same' pads the input so the output has the same shape as the input. However, this mode doesn’t support any stride values other than 1.

    Warning

    For padding='same', if the weight is even-length and dilation is odd in any dimension, a full pad() operation may be needed internally. Lowering performance.

  • dilation – the spacing between kernel elements. Can be a single number or a one-element tuple (dW,). Default: 1

  • groups – split input into groups, in_channels\text{in\_channels} should be divisible by the number of groups. Default: 1

Examples:

>>> inputs = torch.randn(33, 16, 30)
>>> filters = torch.randn(20, 16, 5)
>>> F.conv1d(inputs, filters)

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy