Skip to main content

Near-Lossless Compression of Hyperspectral Imagery Through Crisp/Fuzzy Adaptive DPCM

  • Chapter
Hyperspectral Data Compression

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rao, K.K., Hwang, J.J.: Techniques and Standards for Image, Video, and Audio Coding. Prentice Hall, Engl. Cliffs, NJ (1996)

    Google Scholar 

  2. Taubman, D.S., Marcellin, M.W.: JPEG2000: Image compression fundamentals, standards and practice. Kluwer Academic Publishers, Dordrecht, The Netherlands (2001)

    Google Scholar 

  3. Vaughn, V.D., Wilkinson, T.S.: System considerations for multispectral image compression design. IEEE Signal Processing Magazine 12 (1995) 19–31

    Article  Google Scholar 

  4. ISO TC 20/SC 13/ICS 49.140: 15887-2000: Space data and information transfer systems — Data systems — Lossless data compression. (12-10-2000)

    Google Scholar 

  5. Roger, R.E., Arnold, J.F.: Reversible image compression bounded by noise. IEEE Trans. Geosci. Remote Sensing 32 (1994) 19–24

    Article  Google Scholar 

  6. Aiazzi, B., Alparone, L., Barducci, A., Baronti, S., Pippi, I.: Information-theoretic assessment of sampled hyperspectral imagers. IEEE Trans. Geosci. Remote Sensing 39 (2001) 1447–1458

    Article  Google Scholar 

  7. Chen, K., Ramabadran, T.V.: Near-lossless compression of medical images through entropy-coded DPCM. IEEE Trans. Medical Imaging 13 (1994) 538–548

    Article  Google Scholar 

  8. Aiazzi, B., Alparone, L., Baronti, S.: Near-lossless compression of 3-D optical data. IEEE Trans. Geosci. Remote Sensing 39 (2001) 2547–2557

    Article  Google Scholar 

  9. Aiazzi, B., Alparone, L., Baronti, S., Chirò, G., Lotti, F., Moroni, M.: A pyramid-based error-bounded encoder: An evaluation on X-ray chest images. Signal Processing 59 (1997) 173–187

    Article  Google Scholar 

  10. Ryan, M.J., Arnold, J.F.: Lossy compression of hyperspectral data using vector quantization. Remote Sens. Environ. 61 (1997) 419–436

    Article  Google Scholar 

  11. Jayant, N.S., Noll, P.: Digital Coding of Waveforms: Principles and Applications to Speech and Video. Prentice Hall, Englewood Cliffs, NJ (1984)

    Google Scholar 

  12. Chang, C.I.: An information-theoretic approach to spectral variability, similarity, and discrimination for hyperspectral image analysis. IEEE Trans. Inform. Theory 46 (2000) 1927–1932

    Article  MATH  Google Scholar 

  13. Pennebaker, W.B., Mitchell, J.L.: JPEG: Still Image Compression Standard. Van Nostrand Reinhold, New York (1993)

    Google Scholar 

  14. Weinberger, M.J., Seroussi, G., Sapiro, G.: The LOCO-I lossless image compression algorithm: principles and standardization into JPEG-LS. IEEE Trans. Image Processing 9 (2000) 1309–1324

    Article  Google Scholar 

  15. Wu, X., Memon, N.: Context-based, adaptive, lossless image coding. IEEE Trans. Commun. 45 (1997) 437–444

    Article  Google Scholar 

  16. Aiazzi, B., Alparone, L., Baronti, S.: Fuzzy logic-based matching pursuits for lossless predictive coding of still images. IEEE Trans. Fuzzy Systems 10 (2002) 473–483

    Article  Google Scholar 

  17. Matsuda, I., Mori, H., Itoh, S.: Lossless coding of still images using minimum-rate predictors. In: Proc. IEEE Int. Conf. on Image Processing. Volume I/III. (2000) 132–135

    Google Scholar 

  18. Aiazzi, B., Alparone, L., Baronti, S.: A reduced Laplacian pyramid for lossless and progressive image communication. IEEE Trans. Commun. 44 (1996) 18–22

    Article  Google Scholar 

  19. Said, A., Pearlman, W.A.: An image multiresolution representation for lossless and lossy compression. IEEE Trans. Image Processing 5 (1996) 1303–1310

    Article  Google Scholar 

  20. Abrardo, A., Alparone, L., Bartolini, F.: Encoding-interleaved hierarchical interpolation for lossless image compression. Signal Processing 56 (1997) 321–328

    Article  Google Scholar 

  21. Reichel, J., Menegaz, G., Nadenau, M.J., Kunt, M.: Integer wavelet transform for embedded lossy to lossless image compression. IEEE Trans. Image Processing 10 (2001) 383–392

    Article  Google Scholar 

  22. Benazza-Benyahia, A., Pesquet, J.C., Hamdi, M.: Vector-lifting schemes for lossless coding and progressive archival of multispectral images. IEEE Trans. Geosci. Remote Sensing 40 (2002) 2011–2024

    Article  Google Scholar 

  23. Alecu, A., Munteanu, A., Cornelis, J., Dewitte, S., Schelkens, P.: On the optimality of embedded deadzone scalar-quantizers for wavelet-based L-infinite-constrained image coding. IEEE Signal Processing Lett. 11 (2004) 367–370

    Article  Google Scholar 

  24. Aiazzi, B., Alparone, L., Baronti, S., Lotti, F.: Lossless image compression by quantization feedback in a content-driven enhanced Laplacian pyramid. IEEE Trans. Image Processing 6 (1997) 831–843

    Article  Google Scholar 

  25. Golchin, F., Paliwal, K.K.: Classified adaptive prediction and entropy coding for lossless coding of images. In: Proc. IEEE Int. Conf. on Image Processing. Volume III/III. (1997) 110–113

    Article  Google Scholar 

  26. Aiazzi, B., Alparone, L., Baronti, S.: Near-lossless image compression by relaxation-labelled prediction. Signal Processing 82 (2002) 1619–1631

    Article  Google Scholar 

  27. Deng, G., Ye, H., Cahill, L.W.: Adaptive combination of linear predictors for lossless image compression. IEE Proc.-Sci. Meas. Technol. 147 (2000) 414–419

    Article  Google Scholar 

  28. Carpentieri, B., Weinberger, M.J., Seroussi, G.: Lossless compression of continuous-tone images. Proc. of the IEEE 88 (2000) 1797–1809

    Article  Google Scholar 

  29. Ramabadran, T.V., Chen, K.: The use of contextual information in the reversible compression of medical images. IEEE Trans. Medical Imaging 11 (1992) 185–195

    Article  Google Scholar 

  30. Aiazzi, B., Alparone, L., Baronti, S.: Context modeling for near-lossless image coding. IEEE Signal Processing Lett. 9 (2002) 77–80

    Article  Google Scholar 

  31. Wu, X., Bao, P.: L constrained high-fidelity image compression via adaptive context modeling. IEEE Trans. Image Processing 9 (2000) 536–542

    Article  Google Scholar 

  32. Witten, I.H., Neal, R.M., Cleary, J.G.: Arithmetic coding for data compression. Commun. ACM 30 (1987) 520–540

    Article  Google Scholar 

  33. Rice, R.F., Plaunt, J.R.: Adaptive variable-length coding for efficient compression of spacecraft television data. IEEE Trans. Commun. Technol. COM-19 (1971) 889–897

    Article  Google Scholar 

  34. Weinberger, M.J., Rissanen, J.J., Arps, R.B.: Applications of universal context modeling to lossless compression of grayscale images. IEEE Trans. Image Processing 5 (1996) 575–586

    Article  Google Scholar 

  35. Wang, J., Zhang, K., Tang, S.: Spectral and spatial decorrelation of Landsat-TM data for lossless compression. IEEE Trans. Geosci. Remote Sensing 33 (1995) 1277–1285

    Article  Google Scholar 

  36. Roger, R.E., Cavenor, M.C.: Lossless compression of AVIRIS images. IEEE Trans. Image Processing 5 (1996) 713–719

    Article  Google Scholar 

  37. Tate, S.R.: Band ordering in lossless compression of multispectral images. IEEE Trans. Comput. 46 (1997) 477–483

    Article  MathSciNet  Google Scholar 

  38. Rao, A.K., Bhargava, S.: Multispectral data compression using bidirectional interband prediction. IEEE Trans. Geosci. Remote Sensing 34 (1996) 385–397

    Article  Google Scholar 

  39. Mielikainen, J., Toivanen, P., Kaarna, A.: Linear prediction in lossless compression of hyperspectral images. J. Optical Engin. 42 (2003) 1013–1017

    Article  Google Scholar 

  40. Mielikainen, J., Toivanen, P.: Clustered DPCM for the lossless compression of hyperspectral images. IEEE Trans. Geosci. Remote Sensing 41 (2003) 2943–2946

    Article  Google Scholar 

  41. Wu, X., Memon, N.: Context-based lossless interband compression-Extending CALIC. IEEE Trans. Image Processing 9 (2000) 994–1001

    Article  Google Scholar 

  42. Magli, E., Olmo, G., Quacchio, E.: Optimized onboard lossless and near-lossless compression of hyperspectral data using CALIC. IEEE Geosci. Remote Sensing Lett. 1 (2004) 21–25

    Article  Google Scholar 

  43. Aiazzi, B., Alparone, L., Baronti, S., Santurri, L.: Near-lossless compression of multi/hyperspectral images based on a fuzzy-matching-pursuits interband prediction. In Serpico, S.B., ed.: Image and Signal Processing for Remote Sensing VII. Volume 4541. (2002) 252–263

    Google Scholar 

  44. Aiazzi, B., Alba, P., Alparone, L., Baronti, S.: Lossless compression of multi/hyper-spectral imagery based on a 3-D fuzzy prediction. IEEE Trans. Geosci. Remote Sensing 37 (1999) 2287–2294

    Article  Google Scholar 

  45. Rizzo, F., Carpentieri, B., Motta, G., Storer, J.A.: Low-complexity lossless compression of hyperspectral imagery via linear prediction. IEEE Signal Processing Lett. 12 (2005) 138–141

    Article  Google Scholar 

  46. Mallat, S., Zhang, Z.: Matching pursuits with time-frequency dictionaries. IEEE Trans. Signal Processing 41 (1993) 3397–3415

    Article  Google Scholar 

  47. Neff, R., Zakhor, A.: Very low bit-rate video coding based on matching pursuits. IEEE Trans. Circuits Syst. Video Technol. 7 (1997) 158–171

    Article  Google Scholar 

  48. Baraldi, A., Blonda, P.: A survey of fuzzy clustering algorithms for pattern recognition-Parts I and II. IEEE Trans. Syst. Man Cybern.-B 29 (1999) 778–800

    Article  Google Scholar 

  49. Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function Algorithm. Plenum Press, New York (1981)

    Google Scholar 

  50. Ke, L., Marcellin, M.W.: Near-lossless image compression: minimum entropy, constrained-error DPCM. IEEE Trans. Image Processing 7 (1998) 225–228

    Article  MathSciNet  Google Scholar 

  51. Keshava, N.: Distance metrics and band selection in hyperspectral processing with applications to material identification and spectral libraries. IEEE Trans. Geosci. Remote Sensing 42 (2004) 1552–1565

    Article  Google Scholar 

  52. Aiazzi, B., Alparone, L., Barducci, A., Baronti, S., Marcoionni, P., Pippi, I., Selva, M.: Noise modelling and estimation of hyperspectral data from airborne imaging spectrometers. Annals of Geophysics 48 (2005) in press

    Google Scholar 

  53. Aiazzi, B., Alparone, L., Barducci, A., Baronti, S., Pippi, I.: Estimating noise and information of multispectral imagery. J. Optical Engin. 41 (2002) 656–668

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Aiazzi, B., Alparone, L., Baronti, S., Lastri, C., Santurri, L. (2006). Near-Lossless Compression of Hyperspectral Imagery Through Crisp/Fuzzy Adaptive DPCM. In: Motta, G., Rizzo, F., Storer, J.A. (eds) Hyperspectral Data Compression. Springer, Boston, MA. https://doi.org/10.1007/0-387-28600-4_6

Download citation

  • DOI: https://doi.org/10.1007/0-387-28600-4_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-28579-5

  • Online ISBN: 978-0-387-28600-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy