Skip to main content

Adaptive Mesh Smoothing for Feature Preservation

  • Conference paper
Computational Science and Its Applications – ICCSA 2005 (ICCSA 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3483))

Included in the following conference series:

  • 1334 Accesses

Abstract

A simple algorithm is presented in this paper to preserve the feature of the mesh while the mesh is smoothed. In this algorithm, the bilateral filter is modified to incorporate local first-order properties of the mesh to enhance the effectiveness of the filter in preserving features. The smoothing process is error-bounded to avoid over-smoothing the mesh. Several examples are given to demonstrate the effectiveness of this algorithm in preserving the feature while removing noise from the mesh.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Meyer, M., Desbrun, M., Schröder, P., Barr, A.H.: Discrete differential-geometry operators for triangulated 2-manifolds. Proceeding of Visualization and Mathematics (2002)

    Google Scholar 

  2. Taubin, G.: A signal processing approach to fair surface design. Computer Graphcis, 351–358 (1995)

    Google Scholar 

  3. Desbrun, M., Meyer, M., Schröder, P., Barr, A.H.: Implicit fairing of irregular meshes using diffusion and curvature flow. Computer Graphics, 317–324 (1999)

    Google Scholar 

  4. Peng, J., Strela, V., Zorin, D.: A simple algorithm for surface denoising. IEEE Visualization, 107–112 (2001)

    Google Scholar 

  5. Bajaj, C., Xu, G.: Anisotropic diffusion on surfaces and functions on surfaces. ACM Trans. Graph. 22(1), 4–32 (2003)

    Article  Google Scholar 

  6. Clarenz, U., Diewald, U., Rumpf, M.: Anisotropic geometric diffusion in surface Processing. IEEE Visualization, 397–405 (2000)

    Google Scholar 

  7. Tasdizen, T., Whitaker, R., Burchard, P., Osher, S.: Geometric surface smoothing via anisotropic diffusion of normals. IEEE Visualization, 125–132 (2002)

    Google Scholar 

  8. Taubin, G.: Linear anisotropic mesh filtering. Tech. Rep. IBM Research Report RC 2213

    Google Scholar 

  9. Jones, T.R., Durand, F., Desbrun, M.: Non-iterative, feature-preserving mesh smoothing. ACM Trans. Graph. 22(3), 943–949 (2003)

    Article  Google Scholar 

  10. Fleishman, S., Drori, I., Cohen-Or, D.: Bilateral mesh denoising. ACM Trans. Graph. 22(3), 950–953 (2003)

    Article  Google Scholar 

  11. Guskov, I., Sweldens, W., Schröder, P.: Multiresolution signal processing for meshes. Computer Graphics, 325–334 (1999)

    Google Scholar 

  12. Ohtake, Y., Belyaev, A., Bogaevski, I.: Mesh regularization and adaptive smoothing. Computer-Aided Design 33, 789–800 (2001)

    Article  Google Scholar 

  13. Smith, S., Brady, J.: SUSAN-a new approach to low level image processing. IJCV 23, 45–78 (1997)

    Article  Google Scholar 

  14. Tomasi, C., Manduchi, R.: Bilateral filtering for gray and color images. In: Proc. IEEE Int. Conf. on Computer Vision, pp. 836–846 (1998)

    Google Scholar 

  15. Durand, F., Dorsey, J.: Fast bilateral filtering for the display of high-dynamic-range images. ACM Trans. Graph. 21(3), 257–266

    Google Scholar 

  16. Elad, M.: On the bilateral filter and ways to improve it. IEEE Trans. On Image Processing 11(10), 1141–1151 (2002)

    Article  MathSciNet  Google Scholar 

  17. Harris, J.W., Stocker, H.: Handbook of mathematics and computational science. Springer, New York (1998)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Li, W., Goh, L.P., Hung, T., Xu, S. (2005). Adaptive Mesh Smoothing for Feature Preservation. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2005. ICCSA 2005. Lecture Notes in Computer Science, vol 3483. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11424925_95

Download citation

  • DOI: https://doi.org/10.1007/11424925_95

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25863-6

  • Online ISBN: 978-3-540-32309-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy