Abstract
We report on an ongoing effort to build a Dynamic Data Driven Application System (DDDAS) for short-range forecast of wildfire behavior from real-time weather data, images, and sensor streams. The system should change the forecast when new data is received. The basic approach is to encapsulate the model code and use an ensemble Kalman filter in time-space. Several variants of the ensemble Kalman filter are presented, for out-of-sequence data assimilation, hidden model states, and highly nonlinear problems. Parallel implementation and web-based visualization are also discussed.
Chapter PDF
Similar content being viewed by others
Keywords
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
Mandel, J., Chen, M., Franca, L.P., Johns, C., Puhalskii, A., Coen, J.L., Douglas, C.C., Kremens, R., Vodacek, A., Zhao, W.: A note on dynamic data driven wildfire modeling. In: Bubak, M., van Albada, G.D., Sloot, P.M.A., Dongarra, J. (eds.) ICCS 2004. LNCS, vol. 3038, pp. 725–731. Springer, Heidelberg (2004)
Clark, T.L., Coen, J., Latham, D.: Description of a coupled atmosphere-fire model. Intl. J. Wildland Fire 13, 49–64 (2004)
Rothermel, R.C.: A mathematical model for predicting fire spread in wildland fires. USDA Forest Service Research Paper INT-115 (1972)
Clark, T.L., Farley, R.D.: Severe downslope windstorm calculations in two and three spatial dimensions using anelastic interactive grid nesting: A possible mechanism for gustiness. J. of the Atmospheric Sciences 41, 329–350 (1984)
Evensen, G.: The ensemble Kalman filter: Theoretical formulation and practical implementation. Ocean Dynamics 53, 343–367 (2003)
Linn, R., Reisner, J., Colman, J., Winterkamp, J.: Studying wildfire behavior using FIRETEC. Int. J. of Wildland Fire 11, 233–246 (2002)
Patton, E.G., Coen, J.L.: WRF-Fire: A coupled atmosphere-fire module for WRF. In: Preprints of Joint MM5/Weather Research and Forecasting Model Users’ Workshop, Boulder, CO, June 22–25, pp. 221–223. NCAR (2004)
Finney, M.A.: FARSITE: Fire area simulator-model development and evaluation. Res. Pap. RMRS-RP-4, Ogden, UT: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, p. 47 (1998), http://www.farsite.org
Coen, J.L.: Simulation of the Big Elk Fire using using coupled atmosphere-fire modeling. International J. of Wildland Fire 14 (2005) (in print)
Mallick, M., Kirubarajan, T., Arulampalam, S.: Out-of-sequence measurement processing for tracking ground target using particle filters. In: Aerospace Conference Proceedings, vol. 4, pp. 4–1809–4–1818. IEEE, Los Alamitos (2002)
Orton, M., Marrs, A.: A Bayesian approach to multi-target tracking and data fusion with out-of-sequence measurements. In: IEE International Seminar Target Tracking: Algorithms and Applications, vol. 1, p. 5. IEEE, London (2001)
Beneš, M.: Mathematical and computational aspects of solidification of pure substances. Acta Mathematica Universitatis Comenianae. New Series 70, 123–151 (2000)
Burgers, G., van Leeuwen, P.J., Evensen, G.: Analysis scheme in the ensemble Kalman filter. Monthly Weather Review 126, 1719–1724 (1998)
Evensen, G.: Sampling strategies and square root analysis schemes for the EnKF. Ocean Dynamics, 539–560 (2004)
European Centre for Medium-Range Weather Forecasts: Integrated Forecast System (IFS) documentation (CY28r1). V. The Ensemble Prediction System (2004), http://www.ecmwf.int/research/ifsdocs/CY28r1/Ensemble
Knyazev, A.V.: Toward the optimal preconditioned eigensolver: locally optimal block preconditioned conjugate gradient method. SIAM J. Sci. Comput. 23, 517–541 (2001); (electronic) Copper Mountain Conference (2000)
Bengtsson, T., Snyder, C., Nychka, D.: Toward a nonlinear ensemble filter for high dimensional systems. J. of Geophysical Research - Atmospheres 108(D24) (2003)
Johns, C.J., Mandel, J.: A two-stage ensemble Kalman filter for smooth data assimilation. Environmental and Ecological Statistics (2005) (submitted)
Kalnay, E.: Atmospheric Modeling, Data Assimilation and Predictability. Cambridge University Press, Cambridge (2003)
Bertino, L., Evensen, G., Wackernagel, H.: Sequential data assimilation techniques in oceanography. International Statistical Review G 71, 223–241 (2003)
Radke, L.R., Clark, T.L., Coen, J.L., Walther, C., Lockwood, R.N., Riggin, P.J., Brass, J., Higgans, R.: The wildfire experiment (WiFE): Observations with airborne remote sensors. Canadian J. Remote Sensing 26, 406–417 (2000)
Vodacek, A., Kremens, R.L., Fordham, A.J., VanGorden, S.C., Luisi, D., Schott, J.R.: Remote optical detection of biomass burning using a potassium emission signature. International J. of Remote Sensing 13, 2721–2726 (2002)
Ononye, A., Vodacek, A., Kremens, R.: Improved fire temperature estimation using constrained spectral unmixing. In: Remote Sensing for Field Users. Am. Soc. Photogram. Remote Sens CD–ROM Proc. 10th Biennial USDA Forest Service Remote Sensing Applications Conference, Salt Lake City, UT (2005)
Vodacek, A., Ononye, A., Wang, Z., Li, Y.: Automatic estimation of direction of propagation of fire from aerial imagery. In: Remote Sensing for Field Users. Am. Soc. Photogram. Remote Sens. CD–ROM Proc. 10th Biennial USDA Forest Service Remote Sensing Applications Conference, Salt Lake City, UT (2005)
Kremens, R., Faulring, J., Gallagher, A., Seema, A., Vodacek, A.: Autonomous field-deployable wildland fire sensors. International J. of Wildland Fire 12, 237–244 (2003)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Mandel, J. et al. (2005). Towards a Dynamic Data Driven Application System for Wildfire Simulation. In: Sunderam, V.S., van Albada, G.D., Sloot, P.M.A., Dongarra, J.J. (eds) Computational Science – ICCS 2005. ICCS 2005. Lecture Notes in Computer Science, vol 3515. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11428848_82
Download citation
DOI: https://doi.org/10.1007/11428848_82
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-26043-1
Online ISBN: 978-3-540-32114-9
eBook Packages: Computer ScienceComputer Science (R0)