Skip to main content

Minimum Spanning Trees in Hierarchical Multiclass Support Vector Machines Generation

  • Conference paper
Innovations in Applied Artificial Intelligence (IEA/AIE 2005)

Abstract

Support Vector Machines constitute a powerful Machine Learning technique originally designed for the solution of 2-class problems. In multiclass applications, many works divide the whole problem in multiple binary subtasks, whose results are then combined. This paper introduces a new framework for multiclass Support Vector Machines generation from binary predictors. Minimum Spanning Trees are used in the obtainment of a hierarchy of binary classifiers composing the multiclass solution. Different criteria were tested in the tree design and the results obtained evidence the efficiency of the proposed approach, which is able to produce good hierarchical multiclass solutions in polynomial time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows: Theory, Algorithms and Applications. Prentice Hall, Englewood Cliffs (1993)

    Google Scholar 

  2. Allwein, E.L., Shapire, R.E., Singer, Y.: Reducing Multiclass to Binary: a Unifying Approach for Margin Classifiers. In: Proc. of the 17th ICML, pp. 9–16 (2000)

    Google Scholar 

  3. Chang, C.-C., Lin, C.-J.: LIBSVM: a library for support vector machines, http://www.csie.ntu.edu.tw/~cjlin/libsvm/

  4. Cheong, S., Oh, S.H., Lee, S.-Y.: Support Vector Machines with Binary Tree Architecture for Multi-Class Classification. Neural Information Processing - Letters and Reviews 2(3), 47–50 (2004)

    Google Scholar 

  5. Cristianini, N., Taylor, J.S.: An Introduction to Support Vector Machines. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  6. Dietterich, T.G., Bariki, G.: Solving Multiclass Learning Problems via Error-Correcting Output Codes. JAIR 2, 263–286 (1995)

    MATH  Google Scholar 

  7. Ding, C.H.Q., Dubchak, I.: Multi-class Protein Fold Recognition using Support Vector Machines and Neural Networks. Bioinformatics 4(17), 349–358 (2001)

    Article  Google Scholar 

  8. Kreβel, U.: Pairwise Classification and Support Vector Machines. In: Scholkopf, B., Burges, C.J.C., Smola, A.J. (eds.) Advances in Kernel Methods - Support Vector Learning, pp. 185–208. MIT Press, Cambridge (1999)

    Google Scholar 

  9. Platt, J.C., Cristianini, N., Shawe-Taylor, J.: Large Margin DAGs for Multiclass Classification. In: Solla, S.A., Leen, T.K., Müller, K.-R. (eds.) Advances in Neural Information Processing Systems, vol. 12, pp. 547–553. MIT Press, Cambridge (2000)

    Google Scholar 

  10. Rifkin, R., Klautau, A.: In Defense of One-Vs-All Classification. JMLR 5 (2004) ISSN 1533–7928

    Google Scholar 

  11. Salzberg, S.L.: On Comparing Classifiers: Pitfalls to Avoid and a Recommended Approach. Data Mining and Knowledge Discovery 1, 317–328 (1997)

    Article  Google Scholar 

  12. Schwenker, F.: Hierarchical Support Vector Machines for Multi-Class Pattern Recognition. In: Proc. of the 4th Int Conf. on Knowledge-based Intelligent Engineering Systems and Allied Technologies, pp. 561–565. IEEE Computer Society Press, Los Alamitos (2000)

    Google Scholar 

  13. University of California Irvine: UCI benchmark repository - a huge collection of artificial and real-world datasets, http://www.ics.uci.edu/~mlearn

  14. Vapnik, V.N.: Statistical Learning Theory. John Wiley and Sons, New York (1998)

    MATH  Google Scholar 

  15. Vural, V., Dy, J.G.: A Hierarchical Method for Multi-Class Support Vector Machines. In: Proc. of the 21st ICML (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lorena, A.C., de Carvalho, A.C.P.L.F. (2005). Minimum Spanning Trees in Hierarchical Multiclass Support Vector Machines Generation. In: Ali, M., Esposito, F. (eds) Innovations in Applied Artificial Intelligence. IEA/AIE 2005. Lecture Notes in Computer Science(), vol 3533. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11504894_59

Download citation

  • DOI: https://doi.org/10.1007/11504894_59

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-26551-1

  • Online ISBN: 978-3-540-31893-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy