Abstract
In this paper, we evaluate different schemes for constructing a mean shape anatomical atlas for atlas-based segmentation of MR brain images. Each atlas is constructed and validated using a database of 20 images for which detailed manual delineations of 49 different subcortical structures are available. Atlas construction and atlas based segmentation are performed by non-rigid intensity-based registration using a viscous fluid deformation model with parameters that were optimally tuned for this particular task. The segmentation performance of each atlas scheme is evaluated on the same database using a leave-one-out approach and measured by the volume overlap of corresponding regions in the ground-truth manual segmentation and the warped atlas label image.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Thompson, P.M., Toga, A.W.: A framework for computational anatomy. Computing and Visualization in Science 5, 13–34 (2002)
Statistical parameter mapping, http://www.fil.ion.ucl.ac.uk/spm/spm99.html
John Ashburner. Computational Neuroanatomy. PhD thesis, University College London (2000)
Guimond, A., Meunier, J., Thirion, J.-P.: Automatic computation of average brain models. In: Wells, W.M., Colchester, A.C.F., Delp, S.L. (eds.) MICCAI 1998. LNCS, vol. 1496, pp. 631–640. Springer, Heidelberg (1998)
Kochunov, P., Lancaster, J.L., Thompson, P., Woods, R., Mazziotta, J., Hardies, J., Fox, P.: Regional spatial normalization: toward an optimal target. Journal of Computer Assisted Tomography 25(5), 805–816 (2001)
Rohlfing, T., Brandt, R., Menzel, R., Maurer Jr., C.R.: Evaluation of atlas selection strategies for atlas-based image segmentation with application to confocal microscopy images of bee brains. NeuroImage 21, 1428–1442 (2004)
Hammers, A., Allom, R., Koep, M.J., Free, S.L., Myers, R., Lemieux, L., Mitchell, T.N., Brooks, D.J., Duncan, J.: Three-dimensional maximum probability atlas of the human brain, with particular reference to the temporal lobe. Human Brain Mapping 19(4), 224–247 (2003)
D’Agostino, E., Maes, F., Vandermeulen, D., Suetens, P.: A viscous fluid model for non-rigid image registration using mutual information. Medical Image Analysis 7, 565–575 (2003)
Maes, F., Collignon, A., Vandermeulen, D., Marchal, G., Suetens, P.: Multi-modality image registration by maximization of mutual information. IEEE Transactions on Medical Imaging 16(2), 187–198 (1997)
Van Leemput, K., Maes, F., Vandermeulen, D., Suetens, P.: Automated model-based tissue classification of MR images of the brain. IEEE Trans. Med. Img. 18(10), 897–908 (1999)
Wang, Q., DAgostino, E., Seghers, D., Maes, F., Vandermeulen, D., Suetens, P.: Large-scale validation of non-rigid registration algorithms in a brain image segmentation framework. Technical Report KUL/ESAT/PSI/0502, KU Leuven, Dept. of Electrical Engineering (2005)
Seghers, D., D’Agostino, E., Maes, F., Vandermeulen, D., Suetens, P.: Construction of a brain template from MR images using state-of-the-art registration and segmentation techniques. In: Barillot, C., Haynor, D.R., Hellier, P. (eds.) MICCAI 2004. LNCS, vol. 3216, pp. 696–703. Springer, Heidelberg (2004)
Bello, F., Colchester, A.C.F.: Measuring global and local spatial correspondence using information theory. In: Wells, W.M., Colchester, A.C.F., Delp, S.L. (eds.) MICCAI 1998. LNCS, vol. 1496, pp. 964–973. Springer, Heidelberg (1998)
D’Agostino, E., Maes, F., Vandermeulen, D., Suetens, P.: An information theoretic approach for non-rigid image registration using voxel class probabilities. In: Ellis, R.E., Peters, T.M. (eds.) MICCAI 2003. LNCS, vol. 2879, pp. 812–820. Springer, Heidelberg (2003)
Rohlfing, T., Brandt, R., Maurer Jr., C.R., Menzel, R.: Bee brains, b-splines and computational democracy: generating an average shape atlas. In: IEEE Workshop on Mathematical Methods in Biomedical Image Analysis, pp. 187–194 (2001)
D’Agostino, E., Maes, F., Vandermeulen, D., Suetens, P.: Non-rigid atlas-to-image registration by minimization of class-conditional image entropy. In: Barillot, C., Haynor, D.R., Hellier, P. (eds.) MICCAI 2004. LNCS, vol. 3216, pp. 745–753. Springer, Heidelberg (2004)
Rueckert, D., Frangi, A.F., Schnabel, J.A.: Automatic construction of 3-D statistical deformation models of the brain using nonrigid registration. IEEE Trans.Med. Img. 22(8) (2003)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Wang, Q. et al. (2005). Construction and Validation of Mean Shape Atlas Templates for Atlas-Based Brain Image Segmentation. In: Christensen, G.E., Sonka, M. (eds) Information Processing in Medical Imaging. IPMI 2005. Lecture Notes in Computer Science, vol 3565. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11505730_57
Download citation
DOI: https://doi.org/10.1007/11505730_57
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-26545-0
Online ISBN: 978-3-540-31676-3
eBook Packages: Computer ScienceComputer Science (R0)