Skip to main content

Construction and Validation of Mean Shape Atlas Templates for Atlas-Based Brain Image Segmentation

  • Conference paper
Information Processing in Medical Imaging (IPMI 2005)

Abstract

In this paper, we evaluate different schemes for constructing a mean shape anatomical atlas for atlas-based segmentation of MR brain images. Each atlas is constructed and validated using a database of 20 images for which detailed manual delineations of 49 different subcortical structures are available. Atlas construction and atlas based segmentation are performed by non-rigid intensity-based registration using a viscous fluid deformation model with parameters that were optimally tuned for this particular task. The segmentation performance of each atlas scheme is evaluated on the same database using a leave-one-out approach and measured by the volume overlap of corresponding regions in the ground-truth manual segmentation and the warped atlas label image.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Thompson, P.M., Toga, A.W.: A framework for computational anatomy. Computing and Visualization in Science 5, 13–34 (2002)

    Article  MATH  Google Scholar 

  2. Statistical parameter mapping, http://www.fil.ion.ucl.ac.uk/spm/spm99.html

  3. John Ashburner. Computational Neuroanatomy. PhD thesis, University College London (2000)

    Google Scholar 

  4. Guimond, A., Meunier, J., Thirion, J.-P.: Automatic computation of average brain models. In: Wells, W.M., Colchester, A.C.F., Delp, S.L. (eds.) MICCAI 1998. LNCS, vol. 1496, pp. 631–640. Springer, Heidelberg (1998)

    Google Scholar 

  5. Kochunov, P., Lancaster, J.L., Thompson, P., Woods, R., Mazziotta, J., Hardies, J., Fox, P.: Regional spatial normalization: toward an optimal target. Journal of Computer Assisted Tomography 25(5), 805–816 (2001)

    Article  Google Scholar 

  6. Rohlfing, T., Brandt, R., Menzel, R., Maurer Jr., C.R.: Evaluation of atlas selection strategies for atlas-based image segmentation with application to confocal microscopy images of bee brains. NeuroImage 21, 1428–1442 (2004)

    Article  Google Scholar 

  7. Hammers, A., Allom, R., Koep, M.J., Free, S.L., Myers, R., Lemieux, L., Mitchell, T.N., Brooks, D.J., Duncan, J.: Three-dimensional maximum probability atlas of the human brain, with particular reference to the temporal lobe. Human Brain Mapping 19(4), 224–247 (2003)

    Article  Google Scholar 

  8. D’Agostino, E., Maes, F., Vandermeulen, D., Suetens, P.: A viscous fluid model for non-rigid image registration using mutual information. Medical Image Analysis 7, 565–575 (2003)

    Article  Google Scholar 

  9. Maes, F., Collignon, A., Vandermeulen, D., Marchal, G., Suetens, P.: Multi-modality image registration by maximization of mutual information. IEEE Transactions on Medical Imaging 16(2), 187–198 (1997)

    Article  Google Scholar 

  10. Van Leemput, K., Maes, F., Vandermeulen, D., Suetens, P.: Automated model-based tissue classification of MR images of the brain. IEEE Trans. Med. Img. 18(10), 897–908 (1999)

    Article  Google Scholar 

  11. Wang, Q., DAgostino, E., Seghers, D., Maes, F., Vandermeulen, D., Suetens, P.: Large-scale validation of non-rigid registration algorithms in a brain image segmentation framework. Technical Report KUL/ESAT/PSI/0502, KU Leuven, Dept. of Electrical Engineering (2005)

    Google Scholar 

  12. Seghers, D., D’Agostino, E., Maes, F., Vandermeulen, D., Suetens, P.: Construction of a brain template from MR images using state-of-the-art registration and segmentation techniques. In: Barillot, C., Haynor, D.R., Hellier, P. (eds.) MICCAI 2004. LNCS, vol. 3216, pp. 696–703. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  13. Bello, F., Colchester, A.C.F.: Measuring global and local spatial correspondence using information theory. In: Wells, W.M., Colchester, A.C.F., Delp, S.L. (eds.) MICCAI 1998. LNCS, vol. 1496, pp. 964–973. Springer, Heidelberg (1998)

    Google Scholar 

  14. D’Agostino, E., Maes, F., Vandermeulen, D., Suetens, P.: An information theoretic approach for non-rigid image registration using voxel class probabilities. In: Ellis, R.E., Peters, T.M. (eds.) MICCAI 2003. LNCS, vol. 2879, pp. 812–820. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  15. Rohlfing, T., Brandt, R., Maurer Jr., C.R., Menzel, R.: Bee brains, b-splines and computational democracy: generating an average shape atlas. In: IEEE Workshop on Mathematical Methods in Biomedical Image Analysis, pp. 187–194 (2001)

    Google Scholar 

  16. D’Agostino, E., Maes, F., Vandermeulen, D., Suetens, P.: Non-rigid atlas-to-image registration by minimization of class-conditional image entropy. In: Barillot, C., Haynor, D.R., Hellier, P. (eds.) MICCAI 2004. LNCS, vol. 3216, pp. 745–753. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  17. Rueckert, D., Frangi, A.F., Schnabel, J.A.: Automatic construction of 3-D statistical deformation models of the brain using nonrigid registration. IEEE Trans.Med. Img. 22(8) (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wang, Q. et al. (2005). Construction and Validation of Mean Shape Atlas Templates for Atlas-Based Brain Image Segmentation. In: Christensen, G.E., Sonka, M. (eds) Information Processing in Medical Imaging. IPMI 2005. Lecture Notes in Computer Science, vol 3565. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11505730_57

Download citation

  • DOI: https://doi.org/10.1007/11505730_57

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-26545-0

  • Online ISBN: 978-3-540-31676-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy