Skip to main content

Semantic Event Detection in Structured Video Using Hybrid HMM/SVM

  • Conference paper
Image and Video Retrieval (CIVR 2005)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 3568))

Included in the following conference series:

  • 1211 Accesses

Abstract

In this paper, we propose a new semantic event detection algorithm in structured video. A hybrid method that combines HMM with SVM to detect semantic events in video is proposed. The proposed detection method has some advantages that it is suitable to the temporal structure of event thanks to Hidden Markov Models (HMM) and guarantees high classification accuracy thanks to Support Vector Machines (SVM). The performance of the proposed method is compared with that of HMM based method, which shows the performance increase in both recall and precision of semantic event detection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Hua, W., Han, M., Gong, Y.: Baseball Scene Classification using Multimedia Features. In: ICME 2002, vol. 1, pp. 821–824 (2002)

    Google Scholar 

  2. Babaguchi, N., Kawai, Y., Kitahashi, T.: Event based Indexing of Broadcasted Sports Video by Intermodal Collaboration. Multimedia, IEEE Transactions on 4(1), 68–75 (2002)

    Article  Google Scholar 

  3. Xiong, Z., Radhakrishnan, R., Divakaran, A.: Generation of sports highlights using motion activity in combination with a common audio feature extraction framework. Image Processing 1, 5–8 (2003)

    Google Scholar 

  4. Zhong, D., Chang, S.-F.: Structure Analysis of Sports Video using Domain Models. In: Multimedia and Expo, 2001. ICME 2001, pp. 713–716 (2001)

    Google Scholar 

  5. Peker, K.A., Cabassen, R., Divakaran, A.: Rapid Generation of Sport Video Highlights using the MPEG-7 Motion Activity Descriptor. In: Proc. SPIE, vol. 4676, pp. 318–323 (2002)

    Google Scholar 

  6. Assfalg, J., Bertini, M., Del Bimbo, A., Nunziati, W., Pala, P.: Soccer Highlights Detection And Recognition using HMMs. In: ICME 2002, vol. 1, pp. 825–828 (2002)

    Google Scholar 

  7. Kim, C.S., Bae, T.M., Ro, Y.M.: Golf Video Semantic Event Detection Using Hidden Markov Model. In: International Workshop of Advanced Image Technology, Jeju, Korea, vol. 1, pp. 37–42 (2005)

    Google Scholar 

  8. Thanh, N.N., Thang, T.C., Bae, T.M., Ro, Y.M.: Soccer Video Summarization System Based on Hidden Markov Model with Multiple MPEG-7 Descriptors, CISST, 673-678 (2003)

    Google Scholar 

  9. Chang, P., Han, M., Gong, Y.: Extraction Highlights From Baseball Game Video with Hidden Markov Models. Image Processing 1, 609–612 (2002)

    Google Scholar 

  10. Kijak, E., Gravier, G., Gros, P., Oisel, L., Bimbot, F.: HMM Based Structuring of Tennis Videos using Visual And Audio Cues. In: ICME 2003, vol. 3, pp. 309–312 (2003)

    Google Scholar 

  11. Xie, L., Change, S.-F., Divakaran, A., Sun, H.: Structure analysis of soccer video with hidden Markov models. In: Proceedings of International Conference on Acoustic, Speech and Signal Processing (ICASSP), Orlando, FL (2002)

    Google Scholar 

  12. Yu-Lin, K., Lim, J.-H., Kankanhalli, M.S., Xu, C.-S., Tian, Q.: Goal Detection In Soccer Video Using Audio/Visual Keywords

    Google Scholar 

  13. Wan, Y., Ji, S., Xie, Y., Zhang, X., Xie, P.: Video Program Clustering Indexing Based on Face Recognition Hybrid Model of Hidden Markov Model and Support Vector Machine. In: Klette, R., Žunić, J. (eds.) IWCIA 2004. LNCS, vol. 3322, pp. 739–749. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  14. Ganapathiraju, A., Hamaker, J., Picone, J.: Hybrid SVM/HMM Architectures for Speech Recognition. In: Proceedings of the 2000 Speech Transcription Workshop (May 2000)

    Google Scholar 

  15. Gordan, M., Kotropoulos, C., Pitas, I.: Application of support vector machines classifiers to visual speech recognition. In: IEEE International Conference on Image Processing, vol. III, pp. 129–132 (2002)

    Google Scholar 

  16. Ye, J., Yao, H., Jiang, F.: Based on HMM and SVM Multilayer Architecture Classifier for Chinese Sign Language Recognition with Large Vocabulary. In: Third International Conference on Image and Graphics (ICIG 2004), pp. 18–20 (December 2004)

    Google Scholar 

  17. Campbell, W.M.: A SVM/HMM system for speaker recognition. In: IEEE International Conference on Acoustics, Speech, and Signal Processing(ICASSP 2003), vol. 2, pp. 209–212 (April 2003)

    Google Scholar 

  18. Vapnik, V.N.: The Nature of Statistical Learning Theory. Springer, Heidelberg (1995)

    MATH  Google Scholar 

  19. Platt, J.: Probabilistic Outputs for Support Vector Machines and Comparisons to Regularized Likelihood Methods. In: Advances in Large Margin Classifiers. MIT Press, Cambridge (2000)

    Google Scholar 

  20. Xuedong, H., Alex, A., Hsiao-wuen, H.: Spoken Language processing, pp. 377–409. Prentice Hall, Englewood Cliffs (2001)

    Google Scholar 

  21. Bae, T.M., Jin, S.H., Ro, Y.M.: Video Segmentation Using Hidden Markov Model with Multimodal Feature. In: Enser, P.G.B., Kompatsiaris, Y., O’Connor, N.E., Smeaton, A., Smeulders, A.W.M. (eds.) CIVR 2004. LNCS, vol. 3115, pp. 401–409. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  22. Joachims, T.: Making large-Scale SVM Learning Practical. In: Schölkopf, B., Burges, C., Smola, A. (eds.) Advances in Kernel Methods - Support Vector Learning. MIT-Press, Cambridge (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bae, T.M., Kim, C.S., Jin, S.H., Kim, K.H., Ro, Y.M. (2005). Semantic Event Detection in Structured Video Using Hybrid HMM/SVM. In: Leow, WK., Lew, M.S., Chua, TS., Ma, WY., Chaisorn, L., Bakker, E.M. (eds) Image and Video Retrieval. CIVR 2005. Lecture Notes in Computer Science, vol 3568. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11526346_15

Download citation

  • DOI: https://doi.org/10.1007/11526346_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-27858-0

  • Online ISBN: 978-3-540-31678-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy