Abstract
The paper presents the comparison of performance of the individual and ensemble of SVM classifiers for the recognition of abnormal heartbeats on the basis of the registered ECG waveforms. The recognition system applies two different Support Vector Machine based classifiers and the ensemble systems composed of the individual classifiers combined together in different way to obtain the best possible performance on the ECG data. The results of numerical experiments using the data of MIT BIH Arrhythmia Database have confirmed the superior performance of the proposed solution.
An erratum to this chapter can be found at http://dx.doi.org/10.1007/11550907_163 .
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Hu, Y.H., Palreddy, S., Tompkins, W.: Patient adaptable ECG beat classifier using a mixture of experts approach. IEEE Tr. Biomed. Eng. 44, 891–900 (1997)
Lagerholm, M., Peterson, C., Braccini, G., Edenbrandt, L., Sornmo, L.: Clustering ECG complexes using Hermite functions and self-organizing maps. IEEE Tr. Biomed. Eng. 47, 838–847 (2000)
Osowski, S., Tran Hoai, L., Markiewicz, T.: Support Vector Machine based expert system for reliable heartbeat recognition. IEEE Tr. on Biomed. Eng. 51, 582–589 (2004)
de Chazal, P., O’Dwyer, M., Reilly, R.B.: Automatic classification of heartbeats using ECG morphology and heartbeat interval features. IEEE Tr. on Biomed. Eng. 51, 1196–1206 (2004)
Mark, R., Moody, G.: MIT-BIH arrhythmia database directory. MIT, Cambridge (1988)
Nikias, C., Petropulu, A.: Higher order spectral analysis. Prentice-Hall, New Jersey (1993)
Vapnik, V.: Statistical learning theory. Wiley, New York (1998)
Hsu, C.W., Lin, C.J.: A comparison methods for multi class support vector machines. IEEE Trans. Neural Networks 13, 415–425 (2002)
Kuncheva, L.: Combining pattern classifiers: methods and algorithms. Wiley, New Jersey (2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Osowski, S., Linh, T.H., Markiewicz, T. (2005). Recognition of Heartbeats Using Support Vector Machine Networks – A Comparative Study. In: Duch, W., Kacprzyk, J., Oja, E., Zadrożny, S. (eds) Artificial Neural Networks: Formal Models and Their Applications – ICANN 2005. ICANN 2005. Lecture Notes in Computer Science, vol 3697. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11550907_101
Download citation
DOI: https://doi.org/10.1007/11550907_101
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-28755-1
Online ISBN: 978-3-540-28756-8
eBook Packages: Computer ScienceComputer Science (R0)