Skip to main content

A Novel Multifaceted Virtual Craniofacial Surgery Scheme Using Computer Vision

  • Conference paper
Computer Vision for Biomedical Image Applications (CVBIA 2005)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3765))

  • 1789 Accesses

Abstract

The paper addresses the problem of virtual craniofacial reconstruction from a set of Computer Tomography (CT) images, with the multiple objectives of achieving accurate local matching of the opposable fracture surfaces and preservation of the global shape symmetry and the biomechanical stability of the reconstructed mandible. The first phase of the reconstruction, with the mean squared error as the performance metric, achieves the best possible local surface matching using the Iterative Closest Point (ICP) algorithm and the Data Aligned Rigidity Constrained Exhaustive Search (DARCES) algorithm each used individually and then in a synergistic combination. The second phase, which consists of an angular perturbation scheme, optimizes a composite reconstruction metric. The composite reconstruction metric is a linear combination of the mean squared error, a global shape symmetry term and the surface area which is shown to be a measure of biomechanical stability. Experimental results, including a thorough validation scheme on simulated fractures in phantoms of the craniofacial skeleton, are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. King, R.E., Scianna, J.M., Petruzzelli, G.J.: Mandible fracture patterns: a suburban trauma center experience. American Journal of Otolaryngology 25(5), 301–307 (2004)

    Article  Google Scholar 

  2. Ogundare, B.O., Bonnick, A., Bayley, N.: Pattern of mandibular fractures in an urban major trauma center. Journal of Oral & Maxillofacial Surgery 61(6), 713–718 (2003)

    Article  Google Scholar 

  3. Zahl, C., Muller, D., Felder, S., Gerlach, K.L.: Cost of miniplate osteosynthesis for treatment of mandibular fractures: a prospective evaluation. Gesundheitswesen 65(10), 561–565 (2003)

    Article  Google Scholar 

  4. Mollemans, W., Schutyser, F., Nadjmi, N., Suetens, P.: Very fast soft tissue predictions with mass tensor model for maxillofacial surgery planning systems. In: Proc. of 9th Annual Conference of the International Society for Computer Aided Surgery, pp. 491–496 (2005)

    Google Scholar 

  5. Keeve, E., Girod, S., Girod, B.: Craniofacial Surgery Simulation. In: Proc. of Visualization in Biomedical Computing, pp. 541–546. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  6. Enciso, R., Memon, A., Neumann, U., Mah, J.: The Virtual Cranio-Facial Patient Project. In: Proc. of 3D Imaging (Medical Imaging Session) (2003)

    Google Scholar 

  7. Sarti, A., Gori, R., Marchetti, C., Bianchi, A., Lamberti, C.: Maxillofacial Virtual Surgery from 3D CT Images. In: Akay, M., Marsh, A. (eds.) VR in medicine. IEEE EMBS Series. IEEE Press, Los Alamitos (1999)

    Google Scholar 

  8. Besl, P.J., McKay, N.D.: A Method for Registration of 3-D Shapes. IEEE Trans. PAMI 14(2), 239–256 (1992)

    Google Scholar 

  9. Granger, S., Pennec, X., Roche, A.: Rigid Point-Surface Registration Using an EM variant of ICP for Computer Guided Oral Implantology. In: Niessen, W.J., Viergever, M.A. (eds.) MICCAI 2001. LNCS, vol. 2208, pp. 752–761. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  10. Chen, C.S.: RANSAC-Based DARCES: A New Approach to Fast Automatic Registration of Partially Overlapping Range Images. IEEE Trans. PAMI 21(11), 1229–1234 (1999)

    Google Scholar 

  11. Rogers, M., Graham, J.: Robust Active Shape Model Search for Medical Image Analysis. In: Proc. of Int. Conf. on Medical Image Understanding and Analysis (MIUA), Portsmouth, UK (2002)

    Google Scholar 

  12. Bhandarkar, S.M., Chowdhury, A.S., Tang, Y., Yu, J., Tollner, E.W.: Surface Matching Algorithms for Computer Aided Reconstructive Plastic Surgery. In: Proc. of IEEE Int. Symposium on Biomedical Imaging (ISBI), Arlington, USA, pp. 740–743 (2004)

    Google Scholar 

  13. Goldstein, H.: Classical Mechanics,  Ch. 5. Addison-Wesley, Reading (1982)

    Google Scholar 

  14. Wang, Y., Peterson, B., Staib, L.: Shape-based 3D Surface Correspondence Using Geodesics and Local Geometry. In: IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), vol. II, pp. 644–651 (2000)

    Google Scholar 

  15. Pohl, K.M., Warfield, S.K., Kikinis, R., Grimson, W.E.L., Wells, W.M.: Coupling Statistical Segmentation and PCA Shape Modeling. In: Barillot, C., Haynor, D.R., Hellier, P. (eds.) MICCAI 2004. LNCS, vol. 3216, pp. 151–159. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  16. Kim, W.Y., Kak, A.C.: 3-D Object Recognition Using Bipartite Matching Embedded in Discrete Relaxation. IEEE Trans. PAMI 13(3), 224–251 (1991)

    Google Scholar 

  17. Kuhn, H.W.: The Hungarian method for the assignment problem. Nav. Res. Log. Quart. 2 (1955)

    Google Scholar 

  18. Arun, K.S., Huang, T.S., Blostein, S.D.: Least-Squares Fitting of Two 3-D Point Sets. IEEE Trans. PAMI 9(5), 698–700 (1987)

    Google Scholar 

  19. Bhandarkar, S.M., Chowdhury, A.S., Tollner, E.W., Yu, J.C., Ritter, E.W., Konar, A.: Surface Reconstruction for Computer Vision-based Craniofacial Surgery. In: Proc. of IEEE Int. Workshop on Applications of Computer Vision (WACV), Breckenridge, USA, pp. 257–262 (2005)

    Google Scholar 

  20. Prima, S., Ourselin, S., Ayache, N.: Computation of the Mid-Sagittal Plane in 3D Brain Images. IEEE Trans. on Medical Imaging 21(2), 122–138 (2002)

    Article  Google Scholar 

  21. Ardekani, B., Kershaw, J., Braun, M., Kanno, I.: Automatic Detection of the Mid-Sagittal Plane in 3-D Brain Images. IEEE Trans. Medical Imaging 16(6), 947–952 (1997)

    Article  Google Scholar 

  22. Tuzikov, A., Colliot, O., Bloch, I.: Brain Symmetry plane computation in MR images using inertia axes and optimization. In: Intl. Conf. on Pattern Recognition, vol. 1, pp. 10516–10519 (2002)

    Google Scholar 

  23. Gefan, S., Fan, Y., Bertrand, L., Nissanov, J.: Symmetry-based 3D Brain Reconstruction. IEEE Symp. Biomedical Imaging, 744–747 (2004)

    Google Scholar 

  24. Junck, L., Moen, J.G., Hutchins, G.D., Brown, M.B., Kuhl, D.E.: Correlation methods for the centering, rotation and alignment of functional brain images. Journal of Nuclear Medicine 31(7), 1220–1226 (1990)

    Google Scholar 

  25. Shames, I.H.: Mechanics of deformable solids. Prentice-Hall Inc., Englewood Cliffs (1964)

    Google Scholar 

  26. Besl, P.J.: Surfaces in Early Range Image Understanding. PhD Thesis, Ch. 3, Univ. of Michigan (1986)

    Google Scholar 

  27. Suk, M., Bhandarkar, S.M.: Three-dimensional Object Recognition from Range Images,  Ch. 7. Springer, Tokyo (1992)

    Google Scholar 

  28. ImageJ Website, http://rsb.info.nih.gov

  29. 3D Doctor Website, http://www.ablesw.com/3d-doctor/3ddoctor.html

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chowdhury, A.S., Bhandarkar, S.M., Tollner, E.W., Zhang, G., Yu, J.C., Ritter, E. (2005). A Novel Multifaceted Virtual Craniofacial Surgery Scheme Using Computer Vision. In: Liu, Y., Jiang, T., Zhang, C. (eds) Computer Vision for Biomedical Image Applications. CVBIA 2005. Lecture Notes in Computer Science, vol 3765. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11569541_16

Download citation

  • DOI: https://doi.org/10.1007/11569541_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-29411-5

  • Online ISBN: 978-3-540-32125-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy