Abstract
We prove an exponential lower bound on the size of static Lovász-Schrijver calculus refutations of Tseitin tautologies. We use several techniques, namely, translating static LS + proof into Positivstellensatz proof of Grigoriev et al., extracting a “good” expander out of a given graph by removing edges and vertices of Alekhnovich et al., and proving linear lower bound on the degree of Positivstellensatz proofs for Tseitin tautologies.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Gomory, R.E.: An algorithm for integer solutions of linear programs. In: Graves, R.L., Wolfe, P. (eds.) Recent Advances in Mathematical Programming, pp. 269–302. McGraw-Hill, New York (1963)
Chvátal, V.: Edmonds polytopes and a hierarchy of combinatorial problems. Discrete Mathematics 4, 305–337 (1973)
Lovász, L., Schrijver, A.: Cones of matrices and set-functions and 0-1 optimization. SIAM J. Optimization 1(2), 166–190 (1991)
Grigoriev, D., Hirsch, E.A., Pasechnik, D.V.: Complexity of semialgebraic proofs. Moscow Mathematical Journal 2(4), 647–679 (2002)
Beame, P., Pitassi, T., Segerlind, N.: Lower Bounds for Lovász-Schrijver Systems and Beyond Follow from Multiparty Communication Complexity. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 1176–1188. Springer, Heidelberg (2005)
Alekhnovich, M., Hirsch, E.A., Itsykson, D.: Exponential lower bounds for the running time of DPLL algorithms on satisfiable formulas. Technical Report 04-041, ECCC (2004)
Grigoriev, D.: Linear lower bound on degrees of Positivstellensatz Calculus proofs for the Parity. TCS 259, 613–622 (2001)
Cook, S.A., Reckhow, R.A.: The relative efficiency of propositional proof systems. The Journal of Symbolic Logic 44(1), 36–50 (1979)
Clegg, M., Edmonds, J., Impagliazzo, R.: Using the Groebner basis algorithm to find proofs of unsatisfiability. In: STOC 1996, pp. 174–183 (1996)
Grigoriev, D., Vorobjov, N.: Complexity of Null- and Positivstellensatz proofs. APAL 113(1-3), 153–160 (2001)
Alekhnovich, M., Razborov, A.: Lower bounds for polynomial calculus: Non-binomial case. In: FOCS 2001, pp. 190–199 (1996)
Kojevnikov, A., Itsykson, D.: Lower Bounds of Static Lovász-Schrijver Calculus Proofs for Tseitin Tautologies. Manuscript in preparation (2006)
Murty, R.: Ramanujan graphs. Journal of the Ramanujan Math. Society 18(1), 1–20 (2003)
Lubotzky, A., Phillips, R., Sarnak, P.: Ramanujan graphs. Combinatorica 8(3), 261–277 (1988)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kojevnikov, A., Itsykson, D. (2006). Lower Bounds of Static Lovász-Schrijver Calculus Proofs for Tseitin Tautologies. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds) Automata, Languages and Programming. ICALP 2006. Lecture Notes in Computer Science, vol 4051. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11786986_29
Download citation
DOI: https://doi.org/10.1007/11786986_29
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-35904-3
Online ISBN: 978-3-540-35905-0
eBook Packages: Computer ScienceComputer Science (R0)