Skip to main content

Lower Bounds of Static Lovász-Schrijver Calculus Proofs for Tseitin Tautologies

  • Conference paper
Automata, Languages and Programming (ICALP 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4051))

Included in the following conference series:

Abstract

We prove an exponential lower bound on the size of static Lovász-Schrijver calculus refutations of Tseitin tautologies. We use several techniques, namely, translating static LS +  proof into Positivstellensatz proof of Grigoriev et al., extracting a “good” expander out of a given graph by removing edges and vertices of Alekhnovich et al., and proving linear lower bound on the degree of Positivstellensatz proofs for Tseitin tautologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Gomory, R.E.: An algorithm for integer solutions of linear programs. In: Graves, R.L., Wolfe, P. (eds.) Recent Advances in Mathematical Programming, pp. 269–302. McGraw-Hill, New York (1963)

    Google Scholar 

  2. Chvátal, V.: Edmonds polytopes and a hierarchy of combinatorial problems. Discrete Mathematics 4, 305–337 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  3. Lovász, L., Schrijver, A.: Cones of matrices and set-functions and 0-1 optimization. SIAM J. Optimization 1(2), 166–190 (1991)

    Article  MATH  Google Scholar 

  4. Grigoriev, D., Hirsch, E.A., Pasechnik, D.V.: Complexity of semialgebraic proofs. Moscow Mathematical Journal 2(4), 647–679 (2002)

    MATH  MathSciNet  Google Scholar 

  5. Beame, P., Pitassi, T., Segerlind, N.: Lower Bounds for Lovász-Schrijver Systems and Beyond Follow from Multiparty Communication Complexity. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 1176–1188. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  6. Alekhnovich, M., Hirsch, E.A., Itsykson, D.: Exponential lower bounds for the running time of DPLL algorithms on satisfiable formulas. Technical Report 04-041, ECCC (2004)

    Google Scholar 

  7. Grigoriev, D.: Linear lower bound on degrees of Positivstellensatz Calculus proofs for the Parity. TCS 259, 613–622 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  8. Cook, S.A., Reckhow, R.A.: The relative efficiency of propositional proof systems. The Journal of Symbolic Logic 44(1), 36–50 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  9. Clegg, M., Edmonds, J., Impagliazzo, R.: Using the Groebner basis algorithm to find proofs of unsatisfiability. In: STOC 1996, pp. 174–183 (1996)

    Google Scholar 

  10. Grigoriev, D., Vorobjov, N.: Complexity of Null- and Positivstellensatz proofs. APAL 113(1-3), 153–160 (2001)

    MathSciNet  Google Scholar 

  11. Alekhnovich, M., Razborov, A.: Lower bounds for polynomial calculus: Non-binomial case. In: FOCS 2001, pp. 190–199 (1996)

    Google Scholar 

  12. Kojevnikov, A., Itsykson, D.: Lower Bounds of Static Lovász-Schrijver Calculus Proofs for Tseitin Tautologies. Manuscript in preparation (2006)

    Google Scholar 

  13. Murty, R.: Ramanujan graphs. Journal of the Ramanujan Math. Society 18(1), 1–20 (2003)

    Google Scholar 

  14. Lubotzky, A., Phillips, R., Sarnak, P.: Ramanujan graphs. Combinatorica 8(3), 261–277 (1988)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kojevnikov, A., Itsykson, D. (2006). Lower Bounds of Static Lovász-Schrijver Calculus Proofs for Tseitin Tautologies. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds) Automata, Languages and Programming. ICALP 2006. Lecture Notes in Computer Science, vol 4051. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11786986_29

Download citation

  • DOI: https://doi.org/10.1007/11786986_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-35904-3

  • Online ISBN: 978-3-540-35905-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy