Abstract
We present exact algorithms with exponential running times for variants of n-element set cover problems, based on divide-and-conquer and on inclusion–exclusion characterisations.
We show that the Exact Satisfiability problem of size l with m clauses can be solved in time 2m l O(1) and polynomial space. The same bounds hold for counting the number of solutions. As a special case, we can count the number of perfect matchings in an n-vertex graph in time 2n n O(1) and polynomial space. We also show how to count the number of perfect matchings in time O(1.732n) and exponential space.
Using the same techniques we show how to compute Chromatic Number of an n-vertex graph in time O(2.4423n) and polynomial space, or time O(2.3236n) and exponential space.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Angelsmark, O., Thapper, J.: Partitioning based algorithms for some colouring problems. In: Hnich, B., Carlsson, M., Fages, F., Rossi, F. (eds.) CSCLP 2005. LNCS (LNAI), vol. 3978, pp. 44–58. Springer, Heidelberg (2006)
Bax, E.T.: Inclusion and exclusion algorithm for the Hamiltonian Path problem. Inf. Process. Lett. 47(4), 203–207 (1993)
Björklund, A., Husfeldt, T.: Inclusion–exclusion based algorithms for graph colouring. Technical Report TR06-44, Elect. Coll. Comput. Compl. (2006)
Byskov, J.M.: Enumerating maximal independent sets with applications to graph colouring. Operations Research Letters 32, 547–556 (2004)
Byskov, J.M.: Exact algorithms for graph colouring and exact satisfiability. PhD thesis, University of Aarhus (2004)
Chien, S.: A determinant-based algorithm for counting perfect matchings in a general graph. In: Proc. 15th SODA, pp. 728–735 (2004)
Christofides, N.: An algorithm for the chromatic number of a graph. Computer J. 14, 38–39 (1971)
Coppersmith, D., Winograd, S.: Matrix multiplication via arithmetic progressions. J. Symb. Comput. 9(3), 251–280 (1990)
Davis, M., Logemann, G., Loveland, D.: A machine program for theorem proving. Communications of the ACM 5(7), 394–397 (1962)
Eppstein, D.: Small maximal independent sets and faster exact graph coloring. J. Graph Algorithms and Applications 7(2), 131–140 (2003)
Feder, T., Motwani, R.: Worst-case time bounds for coloring and satisfiability problems. J. Algorithms 45(2), 192–201 (2002)
Feige, U., Kilian, J.: Exponential time algorithms for computing the bandwidth of a graph. Manuscript, cited in [24]
Gurevich, Y., Shelah, S.: Expected computation time for Hamiltonian path problem. SIAM Journal on Computing 16(3), 486–502 (1987)
Hujter, M., Tuza, Z.: On the number of maximal independent sets in triangle-free graphs. SIAM J. Discrete Mathematics 6(2), 284–288 (1993)
Jerrum, M., Sinclair, A., Vigoda, E.: A polynomial-time approximation algorithm for the permanent of a matrix with non-negative entries. In: Proc. 33rd STOC, pp. 712–721 (2001)
Lawler, E.L.: A note on the complexity of the chromatic number problem. Information Processing Letters 5(3), 66–67 (1976)
Madsen, B.A.: An algorithm for exact satisfiability analysed with the number of clauses as parameter. Information Processing Letters 97(1), 28–30 (2006)
Moon, J.W., Moser, L.: On cliques in graphs. In: Israel J. Math. (1965)
Porschen, S.: On some weighted satisfiability and graph problems. In: Vojtáš, P., Bieliková, M., Charron-Bost, B., Sýkora, O. (eds.) SOFSEM 2005. LNCS, vol. 3381, pp. 278–287. Springer, Heidelberg (2005)
Ryser, H.J.: Combinatorial Mathematics. Carus Math. Monographs, vol. 14. Math. Assoc. America (1963)
Tsukiyama, S., Ide, M., Ariyoshi, H., Shirakawa, I.: A new algorithm for generating all the maximal independent sets. SIAM J. Comput. 6(3), 505–517 (1977)
Valiant, L.G.: The complexity of computing the permanent. Theoretical Computer Science 8, 189–201 (1979)
Williams, R.: A new algorithm for optimal constraint satisfaction and its implications. In: Díaz, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 1227–1237. Springer, Heidelberg (2004)
Woeginger, G.J.: Exact algorithms for NP-hard problems: a survey. In: Combinatorial optimization: Eureka, you shrink!, pp. 185–207. Springer, Heidelberg (2003)
Woeginger, G.J.: Space and time complexity of exact algorithms: Some open problems. In: Downey, R.G., Fellows, M.R., Dehne, F. (eds.) IWPEC 2004. LNCS, vol. 3162, pp. 281–290. Springer, Heidelberg (2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Björklund, A., Husfeldt, T. (2006). Exact Algorithms for Exact Satisfiability and Number of Perfect Matchings. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds) Automata, Languages and Programming. ICALP 2006. Lecture Notes in Computer Science, vol 4051. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11786986_48
Download citation
DOI: https://doi.org/10.1007/11786986_48
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-35904-3
Online ISBN: 978-3-540-35905-0
eBook Packages: Computer ScienceComputer Science (R0)