Abstract
In this paper, it is remarked that BZ lattice structures can recover several theoretical approaches to rough sets, englobing their individual richness in a unique structure. Rough sets based on a similarity relation are also considered, showing that the BZ lattice approach turns out to be even more useful, since enables one to define another rough approximation, which is better than the corresponding similarity one.
This work has been supported by MIUR/COFIN project “Formal Languages and Automata: Theory and Application”.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Cattaneo, G., Ciucci, D.: Some Methodological Remarks About Categorical Equivalences in the Abstract Approach to Roughness – Part I. In: Wang, G.-Y., Peters, J.F., Skowron, A., Yao, Y. (eds.) RSKT 2006. LNCS (LNAI), vol. 4062, pp. 277–283. Springer, Heidelberg (2006)
Cattaneo, G., Nisticò, G.: Brouwer-Zadeh posets and three valued Łukasiewicz posets. Fuzzy Sets and Systems 33, 165–190 (1989)
Cignoli, R.: Boolean elements in Łukasiewicz algebras. I. Proceedings of the Japan Academy 41, 670–675 (1965)
Moisil, G.C.: Recherches sur les logiques non-chrysippiennes. Annales Sc. Univ. Jassy 26, 431–466 (1940)
Moisil, G.C.: Notes sur les logiques non-chrysippiennes. Annales Sc. Univ. Jassy 27, 86–98 (1941)
Cattaneo, G., Dalla Chiara, M.L., Giuntini, R.: Some algebraic structures for many-valued logics. Tatra Mountains Mathematical Publication 15, 173–196 (1998)
Vakarelov, D.: A modal logic for similarity relations in Pawlak knowledge representation systems. Fundamenta Informaticae XV, 61–79 (1991)
Skowron, A., Stepaniuk, J.: Tolerance approximation spaces. Fundamenta Informaticae 27, 245–253 (1996)
Słowinski, R., Vanderpooten, D.: A generalized definition of rough approximations based on similarity. IEEE Transactions on Knowledge and Data Engineering 12, 331–336 (2000)
Yao, Y.: Relational interpretations of neighborhood operators and rough set approximation operators. Information Sciences 111, 239–259 (1998)
Cattaneo, G., Ciucci, D.: Algebraic structures for rough sets. In: Peters, J.F., Skowron, A., Dubois, D., Grzymała-Busse, J.W., Inuiguchi, M., Polkowski, L. (eds.) Transactions on Rough Sets II. LNCS, vol. 3135, pp. 218–264. Springer, Heidelberg (2004)
Cattaneo, G.: Abstract approximation spaces for rough theories. In: Polkowski, L., Skowron, A. (eds.) Rough Sets in Knowledge Discovery 1, pp. 59–98. Physica–Verlag, Heidelberg, New York (1998)
Cattaneo, G.: Generalized rough sets (preclusivity fuzzy-intuitionistic BZ lattices). Studia Logica 58, 47–77 (1997)
Düntsch, I., Orlowska, E.: Beyond modalities: Sufficiency and mixed algebras. In: Orlowska, E., Szalas, A. (eds.) Relational Methods for Computer Science Applications, pp. 277–299. Physica–Verlag, Heidelberg (2001)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Cattaneo, G., Ciucci, D. (2006). Some Methodological Remarks About Categorical Equivalences in the Abstract Approach to Roughness – Part II. In: Wang, GY., Peters, J.F., Skowron, A., Yao, Y. (eds) Rough Sets and Knowledge Technology. RSKT 2006. Lecture Notes in Computer Science(), vol 4062. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11795131_41
Download citation
DOI: https://doi.org/10.1007/11795131_41
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-36297-5
Online ISBN: 978-3-540-36299-9
eBook Packages: Computer ScienceComputer Science (R0)