Abstract
Inducing classification rules on domains from which information is gathered at regular periods lead the number of such classification rules to be generally so huge that selection of interesting ones among all discovered rules becomes an important task. At each period, using the newly gathered information from the domain, the new classification rules are induced. Therefore, these rules stream through time and are so called streaming classification rules. In this paper, an interactive classification rules’ interestingness learning algorithm (ICRIL) is developed to automatically label the classification rules either as “interesting” or “uninteresting” with limited user interaction. In our study, VFFP (Voting Fuzzified Feature Projections), a feature projection based incremental classification algorithm, is also developed in the framework of ICRIL. The concept description learned by the VFFP is the interestingness concept of streaming classification rules.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Güvenir, H.A.: Benefit Maximization in Classification on Feature Projections. In: Proceedings of the 3rd IASTED International Conference on Artificial Intelligence and Applications (AIA 2003), pp. 424–429 (2003)
Klemettinen, M., Mannila, H., Ronkainen, P., Toivonen, H., Verkamo, A.I.: Finding interesting rules from large sets of discovered association rules. In: Proceedings of the 3rd Int. Conf. on Information and Knowledge Management, pp. 401–407 (1994)
Liu, B., Hsu, W., Chen, S.: Using general impressions to analyze discovered classification rules. In: Proceedings of the 3rd Int. Conf. on KDD, pp. 31–36 (1997)
Liu, B., Hsu, W.: Post-analysis of learned rules, pp. 828–834. AAAI Press, Menlo Park (1996)
Hussain, F., Liu, H., Suzuki, E., Lu, H.: Exception rule mining with a relative interestingness measure. In: Terano, T., Chen, A.L.P. (eds.) PAKDD 2000. LNCS, vol. 1805, pp. 86–97. Springer, Heidelberg (2000)
Dong, G., Li, J.: Interestingness of discovered association rules in terms of neighborhood-based unexpectedness. In: Wu, X., Kotagiri, R., Korb, K.B. (eds.) PAKDD 1998. LNCS, vol. 1394, pp. 72–86. Springer, Heidelberg (1998)
Aydın, T., Güvenir, H.A.: Learning Interestingness of Streaming Classification Rules. In: Aykanat, C., Dayar, T., Körpeoğlu, İ. (eds.) ISCIS 2004. LNCS, vol. 3280, pp. 62–71. Springer, Heidelberg (2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Aydın, T., Güvenir, H.A. (2006). Modeling Interestingness of Streaming Classification Rules as a Classification Problem. In: Savacı, F.A. (eds) Artificial Intelligence and Neural Networks. TAINN 2005. Lecture Notes in Computer Science(), vol 3949. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11803089_20
Download citation
DOI: https://doi.org/10.1007/11803089_20
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-36713-0
Online ISBN: 978-3-540-36861-8
eBook Packages: Computer ScienceComputer Science (R0)