Abstract
Functional brain imaging is a source of spatio-temporal data mining problems. A new framework hybridizing multi-objective and multi-modal optimization is proposed to formalize these data mining problems, and addressed through Evolutionary Computation (EC).
The merits of EC for spatio-temporal data mining are demonstrated as the approach facilitates the modelling of the experts’ requirements, and flexibly accommodates their changing goals.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Cesa-Bianchi, N., Conconi, A., Gentile, C.: On the generalization ability of on-line learning algorithms. IEEE Transactions on Information Theory 50(9), 2050–2057 (2004)
Chudova, D., Gaffney, S., Mjolsness, E., Smyth, P.: Translation-invariant mixture models for curve clustering. In: Proc. of the Ninth Int. Conf. on Knowledge Discovery and Data Mining, pp. 79–88. ACM, New York (2003)
Corne, D., Knowles, J.D., Oates, M.J.: The Pareto envelope-based selection algorithm for multi-objective optimisation. In: Deb, K., Rudolph, G., Lutton, E., Merelo, J.J., Schoenauer, M., Schwefel, H.-P., Yao, X. (eds.) PPSN 2000. LNCS, vol. 1917, pp. 839–848. Springer, Heidelberg (2000)
Daida, J.: Challenges with verification, repeatability, and meaningful comparison in genetic programming: Gibson’s magic. In: Proc. of GECCO 1999, pp. 1069–1076. Morgan Kaufmann, San Francisco (1999)
Deb, K.: Multi-Objective Optimization Using Evolutionary Algorithms. John Wiley, Chichester (2001)
Hastie, T., Tibshirani, R., Friedman, J.H.: The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer Series in Statistics (2001)
Hyvarinen, A., Karhunen, J., Oja, E.: Independent Component Analysis. Wiley, New York (2001)
Hmlinen, M., Hari, R., Ilmoniemi, R., Knuutila, J., Lounasmaa, O.V.: Magnetoencephalography: theory, instrumentation, and applications to noninvasive studies of the working human brain. Rev. Mod. Phys 65, 413–497 (1993)
Keim, D.A., Schneidewind, J., Sips, M.: Circleview: a new approach for visualizing time-related multidimensional data sets. In: Proc. of Advanced Visual Interfaces, pp. 179–182. ACM Press, New York (2004)
Lal, T.: Machine Learning Methods for Brain-Computer Interfaces. PhD thesis, Max Plank Institute for Biological Cybernetics (2005)
Laumanns, M., Thiele, L., Deb, K., Zitsler, E.: Combining convergence and diversity in evolutionary multi-objective optimization. Evolutionary Computation 10(3), 263–282 (2002)
Li, J.-P., Balazs, M.E., Parks, G.T., Clarkson, P.J.: A species conserving genetic algorithm for multimodal function optimization. Evolutionary Computation 10(3), 207–234 (2002)
Llorà, X., Sastry, K., Goldberg, D.E., Gupta, A., Lakshmi, L.: Combating user fatigue in IGAs: partial ordering, support vector machines, and synthetic fitness. In: Proc. of GECCO 2005, pp. 1363–1370. ACM, New York (2005)
McCowan, I., Gatica-Perez, D., Bengio, S., Lathoud, G., Barnard, M., Zhang, D.: Automatic analysis of multimodal group actions in meetings. IEEE Trans. on Pattern Analysis and Machine Intelligence (PAMI) 27(3), 305–317 (2005)
Pantazis, D., Nichols, T.E., Baillet, S., Leahy, R.: A comparison of random field theory and permutation methods for the statistical analysis of MEG data. Neuroimage 25, 355–368 (2005)
Roddick, J., Spiliopoulou, M.: A survey of temporal knowledge discovery paradigms and methods. IEEE Trans. on Knowledge and Data Engineering 14(4), 750–767 (2002)
Sebag, M., Tarrisson, N., Teytaud, O., Baillet, S., Lefevre, J.: A multi-objective multi-modal optimization approach for mining stable spatio-temporal patterns. In: Proc. of Int. Joint Conf. on AI, IJCAI 2005, pp. 859–864 (2005)
Shekhar, S., Zhang, P., Huang, Y., Vatsavai, R.R.: Spatial data mining. In: Kargupta, H., Joshi, A. (eds.) Data Mining: Next Generation Challenges and Future Directions, AAAI/MIT Press (2003)
Wu, K., Chen, S., Yu, P.: Interval query indexing for efficient stream processing. In: ACM Conf. on Information and Knowledge Management, pp. 88–97. ACM Press, New York (2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Krmicek, V., Sebag, M. (2006). Functional Brain Imaging with Multi-objective Multi-modal Evolutionary Optimization. In: Runarsson, T.P., Beyer, HG., Burke, E., Merelo-Guervós, J.J., Whitley, L.D., Yao, X. (eds) Parallel Problem Solving from Nature - PPSN IX. PPSN 2006. Lecture Notes in Computer Science, vol 4193. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11844297_39
Download citation
DOI: https://doi.org/10.1007/11844297_39
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-38990-3
Online ISBN: 978-3-540-38991-0
eBook Packages: Computer ScienceComputer Science (R0)