Skip to main content

Discovering Context-Topic Rules in Search Engine Logs

  • Conference paper
String Processing and Information Retrieval (SPIRE 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4209))

Included in the following conference series:

Abstract

In this paper, we present a class of rules, called context-topic rules, for discovering associations between topics and contexts, where a context is defined as a set of features that can be extracted from the log file of a Web search engine. We introduce a notion of rule interestingness that measures the level of the interest of the topic within a context, and provide an algorithm to compute concise representations of interesting context-topic rules. Finally, we present the results of applying the methodology proposed to a large data log of a search engine.

Carlos A. Hurtado was supported by Millennium Nucleus, Center for Web Research (P04-067-F), Mideplan, Chile.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Agrawal, R., Gehrke, J., Gunopulos, D., Raghavan, P.: Automatic subspace clustering of high dimensional data. Data Min. Knowl. Discov. 11(1), 5–33 (2005)

    Article  MathSciNet  Google Scholar 

  2. Borges, J., Levene, M.: Data mining of user navigation patterns. In: Masand, B., Spiliopoulou, M. (eds.) WebKDD 1999. LNCS (LNAI), vol. 1836, pp. 92–112. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  3. Eppstein, D.: Arboricity and bipartite subgraph listing algorithms. Information Processing Letters 51, 207–211 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  4. Fleiss, J.L., Levin, B., Paik, M.C.: Statistical Methods for Rates and Proportions. Wiley, Chichester (2003)

    Book  MATH  Google Scholar 

  5. Hipp, J., Güntzer, U., Nakhaeizadeh, G.: Algorithms for association rule mining – A general survey and comparison. SIGKDD Explorations 2, 58–64 (2000)

    Article  Google Scholar 

  6. Hand, D.J., Mannila, H., Smyth, P.: Principles of Data Mining. The MIT Press, Cambridge (2001)

    Google Scholar 

  7. Li, Y., Ning, P., Wang, X.S., Jajodia, S.: Discovering calendar-based temporal association rules. Data Knowl. Eng. 44(2), 193–218 (2003)

    Article  Google Scholar 

  8. Pu, K., Mendelzon, A.: Concise descriptions of subsets of structured sets. ACM Trans. Database Syst. 30 (1) (2005)

    Google Scholar 

  9. Zaki, M.J., Ogihara, M.: Theoretical foundations of association rules. In: Proceedings of 3rd SIGMOD 1998 Workshop on Research Issues in Data Mining and Knowledge Discovery (DMKD 1998), Seattle, Washington (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hurtado, C.A., Levene, M. (2006). Discovering Context-Topic Rules in Search Engine Logs. In: Crestani, F., Ferragina, P., Sanderson, M. (eds) String Processing and Information Retrieval. SPIRE 2006. Lecture Notes in Computer Science, vol 4209. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11880561_29

Download citation

  • DOI: https://doi.org/10.1007/11880561_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-45774-9

  • Online ISBN: 978-3-540-45775-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy