Skip to main content

Robust Character Recognition Using a Hierarchical Bayesian Network

  • Conference paper
AI 2006: Advances in Artificial Intelligence (AI 2006)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4304))

Included in the following conference series:

  • 3692 Accesses

Abstract

There is increasing evidence to suggest that the neocortex of the mammalian brain does not consist of a collection of specialised and dedicated cortical architectures, but instead possesses a fairly uniform, hierarchically organised structure. As Mountcastle has observed [1], this uniformity implies that the same general computational processes are performed across the entire neocortex, even though different regions are known to play different functional roles. Building on this evidence, Hawkins has proposed a top-down model of neocortical operation [2], taking it to be a kind of pattern recognition machine, storing invariant representations of neural input sequences in hierarchical memory structures that both predict sensory input and control behaviour. The first partial proof of concept of Hawkins’ model was recently developed using a hierarchically organised Bayesian network that was tested on a simple pattern recognition problem [3]. In the current study we extend Hawkins’ work by comparing the performance of a backpropagation neural network with our own implementation of a hierarchical Bayesian network in the well-studied domain of character recognition. The results show that even a simplistic implementation of Hawkins’ model can produce recognition rates that exceed a standard neural network approach. Such results create a strong case for the further investigation and development of Hawkins’ neocortically-inspired approach to building intelligent systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Mountcastle, V.: An organizing principle for cerebral function: the unit model and the distributed system. In: Edelman, G., Mountcastle, V. (eds.) The Mindful Brain, MIT Press, Cambridge (1978)

    Google Scholar 

  2. Hawkins, J., Blakeslee, S.: On intelligence. Henry Holt, New York (2004)

    Google Scholar 

  3. George, D., Hawkins, J.: A hierarchical Bayesian model of invariant pattern recognition in the visual cortex. In: Proceedings of the International Joint Conference on Neural Networks (IJCNN 2005) (2005)

    Google Scholar 

  4. Riedmiller, M., Braun, H.: A direct adaptive method for faster backpropagation learning: The RPROP algorithm. In: Proceedings of the IEEE International Conference on Neural Networks, San Francisco, CA, pp. 586–591 (1992)

    Google Scholar 

  5. Gader, P.D., Mohamed, M., Chiang, J.H.: Handwritten word recognition with character and inter-character neural networks. IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics 27, 158–164 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Thornton, J., Gustafsson, T., Blumenstein, M., Hine, T. (2006). Robust Character Recognition Using a Hierarchical Bayesian Network. In: Sattar, A., Kang, Bh. (eds) AI 2006: Advances in Artificial Intelligence. AI 2006. Lecture Notes in Computer Science(), vol 4304. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11941439_157

Download citation

  • DOI: https://doi.org/10.1007/11941439_157

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-49787-5

  • Online ISBN: 978-3-540-49788-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy