Skip to main content

Packing Cycles and Cuts in Undirected Graphs

  • Conference paper
  • First Online:
Algorithms — ESA 2001 (ESA 2001)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2161))

Included in the following conference series:

Abstract

We study the complexity and approximability of Cut Packing and Cycle Packing. For Cycle Packing, we show that the problem is \( \mathcal{A}\mathcal{P}\mathcal{X} \)-hard but can be approximated within a factor of O(log n) by a simple greedy approach. Essentially the same approach achieves constant approximation for “dense” graphs. We show that both problems are \( \mathcal{N}\mathcal{P} \)-hard for planar graphs. For Cut Packing we show that, given a graph G the maximum cut packing is always between α(G) and 2α(G). We then derive new or improved polynomial-time algorithms for Cut Packing for special classes of graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. A.A. Ageev, A.V. Kostochka, Z. Szigeti, A Characterization of Seymour Graphs. J. Graph Theory 24 (1997) 357–364.

    Article  MATH  MathSciNet  Google Scholar 

  2. A.A. Ageev, On Finding the Maximum Number of Disjoint Cuts in Seymour Graphs. Proceedings of the 7th European Symposium on Algorithms (ESA’99), Lecture Notes in Comput. Sci., 1643, Springer, Berlin (1999) 490–497.

    Google Scholar 

  3. V. Bafna and P.A. Pevzner, Genome Rearrangements and Sorting by Reversals. SIAM J. on Computing 25 (1996) 272–289.

    Article  MATH  MathSciNet  Google Scholar 

  4. B.S. Baker, Approximation Algorithms for \( \mathcal{N}\mathcal{P} \)-Complete Problems on Planar Graphs. J. ACM 41 (1994) 153–180.

    Article  MATH  Google Scholar 

  5. P. Berman, T. Fujito, On Approximation Properties of the Independent Set Problem for Low Degree Graphs. Theory of Computing Systems 32 (1999) 115–132.

    Article  MATH  MathSciNet  Google Scholar 

  6. P. Berman and M. Karpinski, On Some Tighter Inapproximability Results. ECCC Report No. 29, University of Trier (1998).

    Google Scholar 

  7. B. Bollobás, Extremal Graph Theory, Academic Press, New-York (1978).

    MATH  Google Scholar 

  8. R. Boppana, M.M. Halldórsson, Approximating Maximum Independent Sets by Excluding Subgraphs. Bit 32 (1992) 180–196.

    Article  MATH  MathSciNet  Google Scholar 

  9. A. Caprara, Sorting Permutations by Reversals and Eulerian Cycle Decompositions. SIAM J. on Discrete Mathematics 12 (1999) 91–110.

    Article  MATH  MathSciNet  Google Scholar 

  10. C.J. Colbourn, The Combinatorics of Network Reliability. Oxford University Press (1986).

    Google Scholar 

  11. G.A. Dirac, On Rigid Circuit Graphs. Abh. Math. Sem. Univ. Hamburg 25 (1961) 71–76.

    Article  MATH  MathSciNet  Google Scholar 

  12. P. Erdös and L. Pósa. On the Maximal Number of Disjoint Circuits of a Graph. Publ. Math. Debrecen 9 (1962) 3–12.

    MATH  MathSciNet  Google Scholar 

  13. P. Erdös and H. Sachs. Regulare Graphen Gegebener Taillenweite mit Minimaler Knotenzahl. Wittenberg Math.-Natur. Reine 12 (1963) 251–257.

    MATH  Google Scholar 

  14. A. Frank, Conservative Weightings and Ear-Decompositions of Graphs. Combinatorica 13 (1993) 65–81.

    Article  MATH  MathSciNet  Google Scholar 

  15. H.N. Gabow and R.E. Tarjan, Faster Scaling Algorithms for General Matching Problems. J. A CM 38 (1991) 815–853.

    MATH  MathSciNet  Google Scholar 

  16. M. Grotschel, L. Lovász, A. Schrijver, Geometric algorithms and combinatorial optimization, Second edition: Algorithms and Combinatorics, 2. Springer-Verlag, Berlin, (1993). ISBN: 3-540-56740-2.

    Google Scholar 

  17. J. Håstad, Clique is Hard to Approximate within n1-ε. Acta Mathematica 182 (2000) 105–142.

    Article  Google Scholar 

  18. I. Holyer, The \( \mathcal{N}\mathcal{P} \)-Completeness of Some Edge-Partition Problems. SIAM J. on Computing 10 (1981) 713–717.

    Article  MATH  MathSciNet  Google Scholar 

  19. H.B. HuntIII, M.V. Marathe, V. Radhakrishnan, S.S. Ravi, D.J. Rosenkrantz and R.E. Stearns, A Unified Approach to Approximation Schemes for \( \mathcal{N}\mathcal{P} \)-and \( \mathcal{P}\mathcal{S}\mathcal{P}\mathcal{A}\mathcal{C}\mathcal{E} \)-Hard Problems for Geometric Graphs. Proceedings of the 2nd Euoropean Symposium on Algorithms (ESA’94), Lecture Notes in Comput. Sci., 855, Springer, Berlin (1994) 424–435.

    Google Scholar 

  20. J. Kececioglu and D. Sankoff, Exact and Approximation Algorithms for Sorting by Reversals, with Application to Genome Rearrangement. Algorithmica 13 (1995) 180–210.

    Article  MATH  MathSciNet  Google Scholar 

  21. D. Lichtenstein, Planar formulae and their uses. SIAM J. on Computing 11 (1982) 329–343.

    Article  MATH  MathSciNet  Google Scholar 

  22. L. Lovász, M.D. Plummer, Matching Theory, Akadémiai Kiadó (1986)

    Google Scholar 

  23. C.H. Papadimitriou and M. Yannakakis (1991), Optimization, Approximation, and Complexity Classes J. Comput. System Sci. 43 (1991) 425–440.

    Article  MATH  MathSciNet  Google Scholar 

  24. D.J. Rose, R.E. Tarjan and G.S. Lueker, Algorithmic Aspects of Vertex Elimination on Graphs. SIAM J. on Computing 5 (1976) 266–283.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Caprara, A., Panconesi, A., Rizzi, R. (2001). Packing Cycles and Cuts in Undirected Graphs. In: auf der Heide, F.M. (eds) Algorithms — ESA 2001. ESA 2001. Lecture Notes in Computer Science, vol 2161. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44676-1_43

Download citation

  • DOI: https://doi.org/10.1007/3-540-44676-1_43

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42493-2

  • Online ISBN: 978-3-540-44676-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy