Skip to main content

A Compact Scheme for the Streamfunction Formulation of Navier-Stokes Equations

  • Conference paper
  • First Online:
Computational Science and Its Applications — ICCSA 2003 (ICCSA 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2667))

Included in the following conference series:

Abstract

We introduce a pure-streamfunction formulation for the incompressible Navier-Stokes equations. The idea is to replace the vorticity in the vorticity- streamfunction evolution equation by the Laplacianof the streamfunction. The resulting formulation includes the streamfunction only, thus no inter-function relations need to invoked. A compact numerical scheme, which interpolates streamfunction values as well as its first order derivatives, is presented and analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. I. Altas, J. Dym, M. M. Gupta, and R. P Manohar. Mutigrid solution of automatically generated high-order discretizations for the biharmonic equation. SIAM J.Sci.Comput., 19:1575–1585, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  2. M. Ben-Artzi, D. Fishelov, and S. Trachtenberg. Vorticity dynamics and numerical resolution of navier-stokes equations. Math. Model. Numer. Anal., 35(2):313–330, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  3. A. J. Chorin and J. E. Marsden. A Mathematical Introduction to Fluid Mechanics. Springer-Verlag, 2-nd edition, 1990.

    Google Scholar 

  4. U. Ghia, K. N. Ghia, and C. T. Shin. High-re solutions for incompressible flow using the navier-stokes equations and a multigrid method. J. Comp. Phys., 48:387–411, 1982.

    Article  MATH  Google Scholar 

  5. R. Kupferman. A central-difference scheme for a pure streamfunction formulation of incompressible viscous flow. SIAM J. Sci.Comput., 23, No. 1:1–18, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  6. T. W. Pan and R. Glowinski. A projection/wave-like equation method for the numerical simulation of incompressible viscous fluid flow modeled by the navierstokes equations. Comput. Fluid Dynamics, 9, 2000.

    Google Scholar 

  7. J. W. Stephenson. Single cell discretizations of order two and four for biharmonic problems. J.Comp.Phys., 55:65–80, 1984.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fishelov, D., Ben-Artzi, M., Croisille, JP. (2003). A Compact Scheme for the Streamfunction Formulation of Navier-Stokes Equations. In: Kumar, V., Gavrilova, M.L., Tan, C.J.K., L’Ecuyer, P. (eds) Computational Science and Its Applications — ICCSA 2003. ICCSA 2003. Lecture Notes in Computer Science, vol 2667. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44839-X_85

Download citation

  • DOI: https://doi.org/10.1007/3-540-44839-X_85

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40155-1

  • Online ISBN: 978-3-540-44839-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy