Abstract
In this work we use Independent Component Analysis (ICA) as feature extraction stage for cloud screening of Meteosat images covering the Iberian Peninsula. The images are segmented in the classes land (L), sea (S), fog (F), low clouds (CL), middle clouds (CM), high clouds (CH) and clouds with vertical growth (CV). The classification of the pixels of the images is performed with a back propagation neural network (BPNN) from the features extracted by applying the FastICA algorithm over 3x3, 5x5 and 7x7 pixel windows of the images.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Welch, R.M., Kuo K. S., Sengupta S. K., and Chen D. W.: Cloud field classification based upon high spatial resolution textural feature (I): Gray-level cooccurrence matrix approach. J. Geophys. Res., vol. 93, (oct. 1988) 12633–81.
Lee J., Weger R. C., Sengupta S. K. And Welch R.M.: A Neural Network Approach to Cloud Classification. IEEE Transactions on Geoscience and Remote Sensing, vol. 28, no. 5, pp. 846–855, Sept. 1990.
M. Macías, F.J. López, A. Serrano and A. Astillero: “A Comparative Study of two Neural Models for Cloud Screening of Iberian Peninsula Meteosat Images”, Lecture Notes in Computer Science 2085, Bio-inspired applications of connectionism, pp. 184–191, 2001.
A. Astillero, A Serrano, M. Núñez, J.A. García, M. Macías and H.M. Gónzalez: “A Study of the evolution of the cloud cover over Cáceres (Spain) along 1997, estimated from Meteosat images”, Proceedings of the 2001 EUMETSAT Meteorological Satellite Data Users’ Conference, pp. 353–359, 2001
Bankert, R. L et al.,: Cloud Classification of AVHRR Imagery in Maritime Regions Using a Probabilistic Neural Network. Journal of Applied. Meteorology, 33, (1994) 909–918.
B. Tian, M. A. Shaikh, M R. Azimi, T. H. Vonder Haar, and D. Reinke, “An study of neural network-based cloud classification using textural and spectral features,” IEE trans. Neural Networks, vol. 10, pp. 138–151, 1999.
B. Tian, M. R. Azimi, T. H. Vonder Haar, and D. Reinke, “Temporal Updating Scheme for Probabilistic Neural Network with Application to Satellite Cloud Classification,” IEEE trans. Neural Networks, Vol. 11, no. 4, pp. 903–918, Jul. 2000.
R. M. Welch et al., “Polar cloud and surface classification using AVHRR imagery: An intercomparison of methods,” J. Appl. Meteorol., vol. 31, pp. 405–420, May 1992.
N. Lamei et al., “Cloud-type discrimitation via multispectral textural analysis,” Opt. Eng., vol. 33, pp. 1303–1313, Apr. 1994.
R. M. Haralick et al., “Textural features for image classification”, IEEE trans. Syst., Man, Cybern., vol. SMC-3, pp. 610–621, Mar. 1973.
M. F. Aug.eijin, “Performance evaluation of texture measures for ground cover identification in satellite images by means of a neural.network classifier,” IEEE trans. Geosc. Remote Sensing, vol. 33, pp. 616–625, May 1995.
M. Macías, C. J. Garcia, H. M. Velasco, R. Gallardo, A. Serrano “A comparison of PCA and GA selected features for cloud field classification”, Lectures Notes in Computer Science (Lectures Notes in Artificial Intelligence), vol., 527, pp., 42–49, 2002.
C.J. García, M. Macías, A. Serrano, H.M. González and R. Gallardo, “A comparison of PCA, ICA and GA selected features for cloud field classification”, Journal of Intelligent & Fuzzy Systems. Accepted for publication.
P. Comon. Independent component analysis— a new concept? Signal Processing, 36: 287–314, 1994.
Hyvärinen A., Karhunen J., Oja E. Independent Component Analysis. John Wiley and Sons, 2001.
A. Hyvärinen, E. Oja, P. Hover and J. Hurri. Image feature extraction by sparse coding and independent component analisys. In Proc. Int. Conf. On Pattern Recognition (ICPR’98), pp. 1268–1273, Brisbane, Australia, 1998.
C. Jutten and J. Herault, “Blind separation of sources, part I: an adaptive algorithm based on neuromimetic architecture” Signal Processing, vol. 24, no. 1, pp. 1–10, july 1991.
J. Hérault and C. Jutten, Réseaux neuronaux et traitement du signal, Hermes, 1994.
J. Karhunen and J. Joutsensalo, “Generalizations of principal component analysis, optimization problems, and neural networks” Neural Networks, vol. 8, no. 4, pp. 549–562, 1995
A. Cichocki, R. Unbehauen and E. Rummert, “Robust learning algorithm for blind separation of signals”, Electronics Letters, vol. 30, No. 17, 18th August 1994, pp. 1386–1387.
P. Comon, “Independent component analysis, a new concept?,” Signal Processing, vol. 36, no. 3, pp. 287–314, April 1994.
A. Hyvärinen and E. Oja. Independent Component Analysis: Algorithms and Applications. Neural Networks, 13(4–5):411–430, 2000.
A. Hyvärinen. Fast and robust fixed-point algorithms for independent component analysis. IEEE Trans. On Neural Networks, 10(3): 626–634, 1999.
M. Riedmiller, M., Braun, L.: A Direct Adaptive Method for Faster Backpropagation Learning: The RPROP Algorithm. In Proceedings of the IEEE International Conference on Neural Networks 1993 (ICNN 93), 1993.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2003 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Macías-Macías, M., García-Orellana, C.J., González-Velasco, H., Gallardo-Caballero, R. (2003). Independent Component Analysis for Cloud Screening of Meteosat Images. In: Mira, J., Álvarez, J.R. (eds) Artificial Neural Nets Problem Solving Methods. IWANN 2003. Lecture Notes in Computer Science, vol 2687. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44869-1_70
Download citation
DOI: https://doi.org/10.1007/3-540-44869-1_70
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-40211-4
Online ISBN: 978-3-540-44869-3
eBook Packages: Springer Book Archive